
Boosting a weak learning algorithm bymajorityTo be published in Information and ComputationYoav FreundAT&T Bell LaboratoriesNew JerseyJuly 21, 1995AbstractWe present an algorithm for improving the accuracy of algorithms for learningbinary concepts. The improvement is achieved by combining a large number of hy-potheses, each of which is generated by training the given learning algorithm on adi�erent set of examples. Our algorithm is based on ideas presented by Schapire inhis paper \The strength of weak learnability", and represents an improvement over hisresults. The analysis of our algorithm provides general upper bounds on the resourcesrequired for learning in Valiant's polynomial PAC learning framework, which are thebest general upper bounds known today. We show that the number of hypothesesthat are combined by our algorithm is the smallest number possible. Other outcomesof our analysis are results regarding the representational power of threshold circuits,the relation between learnability and compression, and a method for parallelizing PAClearning algorithms. We provide extensions of our algorithms to cases in which theconcepts are not binary and to the case where the accuracy of the learning algorithmdepends on the distribution of the instances.1 IntroductionThe �eld of computational learning is concerned with mathematical analysis of algo-rithms that learn from their experience. One of the main problems studied in com-putational learning theory is that of concept learning. Informally, a concept is a rulethat divides the world into positive and negative examples. For instance, the conceptof \being blue" divides all objects into those that are blue and those that are not blue.The learning algorithm is presented with examples of blue and non-blue objects andis required to deduce the general rule. More formally, we de�ne the set of all possibleobjects as the instance space and de�ne concepts as functions from the instance spaceto the labels \�" and \+". An instance, together with its label is called an example.The goal of concept learning is to generate a (description of) another function, calledthe hypothesis, which is close to the concept, using a set of examples. In general, we1

require that the learning algorithm observe just a small fraction of the instance spaceand that the learner can generalize the information provided by these examples to in-stances that have not been previously observed. It is clear that in order to do that thelearner must have some prior knowledge about the set of possible (or likely) concepts.This knowledge is de�ned in terms of the concept class, which is the set of all a-prioripossible concepts.In this paper we study concept learning in a probabilistic setting. Here the exam-ples that are given to the learning algorithm are generated by choosing the instancesat random from a distribution over the instance space. This distribution is arbitraryand unknown to the learner. The central measure of the quality of a learning algo-rithm in the probabilistic setting is the accuracy of the hypotheses that it generates.The accuracy of a hypothesis is the probability that it classi�es a random instancecorrectly. The accuracy of the hypotheses that are generated by a learning algorithmis expected to improve as the resources available to the algorithm are increased. Themain resources we consider are the number of examples used for learning and the timeand space available to the learning algorithm. One of the main results of this paper isan upper bound on the resources required for learning in the distribution-free modelof learnability introduced by Valiant [Val84].In Valiant's model, commonly referred to as the PAC (Probably Approximately Cor-rect) learning model, or the distribution-free learning model, the quality of a learningalgorithm is de�ned as follows. A learner is said to have accuracy 1� � with reliability1 � � if it generates a hypothesis whose accuracy is at least 1� � with probability atleast 1 � �. The probability that the algorithm fails is measured with respect to therandom choice of the examples given to the learning algorithm and possible internalrandomization of the algorithm.1As was recognized by Haussler et. al. [HKLW91], increasing the reliability of anylearning algorithm is easy. This can be done by testing the hypothesis generated by thealgorithm on an independent set of examples to validate its accuracy. If the accuracyis not su�cient, the algorithm is run again, on a new set of random examples. It iseasy to show that increasing the reliability from 1 � �1 to 1 � �2 can be achieved byrunning the algorithm O(log(1=�2)=(1� �1)) times.2Improving the accuracy of a learning algorithm is much harder. Two di�erentvariants of the PAC model were introduced by Kearns and Valiant [KV94] to addressthis issue. In strong PAC learning, which is the more common model, the learneris given the required accuracy, �, as input, and is required to generate a hypothesiswhose error is smaller than �. The resources used by the algorithm can grow at mostpolynomially in 1=�. On the other hand, in weak PAC learning the accuracy of thehypothesis is required to be just slightly better than 1=2, which is the accuracy of acompletely random guess. When learning with respect to a given distribution over theinstances, weak and strong learning are not equivalent. Kearns and Valiant [KV94]proved that monotone boolean functions can be learned weakly, but not strongly, withrespect to the uniform distribution.This seemed to indicate that weak and strong distribution-free learning should alsobe separated. However, Schapire [Sch90] proved that weak and strong PAC learning areequivalent in the distribution-free case. Schapire presented an algorithm that, given1The exact de�nition of the PAC learning model is given in Section 3.1.2A full analysis of this algorithm is given in Appendix B.2

access to a weak learning algorithm, can generate hypotheses of arbitrary accuracyusing time and space resources that are polynomial in 1=�. This algorithm is calleda \boosting" algorithm. The main idea is to run the weak learning algorithm severaltimes, each time on a di�erent distribution of instances, to generate several di�erenthypotheses. We refer to these hypotheses as the \weak" hypotheses. These weakhypotheses are combined by the boosting algorithm into a single more complex andmore accurate hypothesis. The di�erent distributions are generated using an ingenious\�ltering" process by which part of the random examples that are presented to theboosting algorithm are discarded, and only a subset of the examples are passed onto the weak learning algorithm. It turns out that corollaries of this important resultgive good upper bounds on the time and space complexity of distribution-free learning.Schapire's result also has many important implications related to group-learning, data-compression, and approximation of hard functions.In this article we present a simpler and more e�cient boosting algorithm. Schapire'sboosting algorithm is de�ned recursively. Each level of the recursion is a learningalgorithm whose performance is better than the performance of the recursion levelbelow it. The �nal hypothesis it generates can be represented as a circuit consistingof many three-input majority gates. The input to the circuit are the labels producedby the weak hypotheses, and the output is the �nal label (see Figure 1). The depthof the circuit is a function of the problem parameters (accuracy and reliability), andits structure can vary between runs. The de�nition of our boosting algorithm, on theother hand, is not recursive and the �nal hypothesis can be represented as a singlemajority gate. This majority gate combines the outputs of all of the weak hypotheses.
M

MMM

MMMM M

M

 −hypothesis generated
 by WeakLearn

M −Majority gate

(a)
(b)

Figure 1: Final concepts structure: (a) Schapire (b) A one-layer majority circuit.In this paper we present two variants of our boosting algorithm. The �rst is boostingby �nding a consistent hypothesis. This variant of the algorithm �nds a hypothesiswhich is consistent with a large set of training examples. The analysis of this variant isquite straightforward, and its performance is close to the best performance we achieve.It also seems to be the variant whose application to practical learning problems is moree�cient [Dru93]. The major drawback of this method is that it requires storage of thewhole training set, which yield a space complexity dependence on � of O((log 1=�)2=�)(assuming that the concept class is �xed and that its VC dimension is �nite). Whilethis space requirement is often taken for granted, Schapire's algorithm demonstratesthat boosting can be achieved using only poly-log(1=�) space.3

We thus present a second variant of our algorithm, which we call boosting by �ltering.This algorithm selects a small subset of the training examples as they are generated, andrejects all other examples. The sample complexity (number of training examples) of thisversion of the algorithm with respect to � is O((1=�)(log 1=�)3=2(log log 1=�)), its timecomplexity is O((1=�)(log1=�)5=2(log log 1=�)), its space complexity is (log 1=�)(log log 1=�))and the number of weak hypotheses it combines is O(log 1=�).The boosting by �ltering algorithm is a completely general method for improvingthe accuracy of PAC learning algorithms. Its performance thus gives general upperbounds on the dependence of the time and space complexity of e�cient PAC learningon the desired accuracy. These bounds are, to the best of our knowledge, the bestgeneral upper bounds of this kind that are known today. We present some lowerbounds that show that the possibilities for additional improvement are very limited.In particular, we show that there cannot be a general boosting algorithm that combinesa smaller number of weak hypotheses to achieve the same �nal accuracy.We also present generalizations of the algorithm to learning concepts whose out-put is not binary. One generalization is for concepts with k-valued outputs and isquite straightforward. Another generalization is to real-valued concepts. We show howboosting can be used in this case to transform a learning algorithm that generatesfunctions whose expected error over the domain is bounded by c into a learning algo-rithm that generates functions whose error is bounded by 2c over most of the domain.Intuitively, this gives a method for \spreading" the error of algorithms for learning realvalued functions evenly over the domain.We also extend our result to distribution-speci�c learning. We show that our algo-rithm can be used for boosting the performance of learning algorithms whose accuracydepends on the distribution of the instances. Suppose we have a learning algorithmA, which achieves accuracy 1 � � with respect to the distribution D. If A achievesaccuracy 1 � � for every distribution of the examples then boosting can be used toachieve arbitrary accuracy with respect to D. However, in real world problems, A'saccuracy usually depends on the distribution of the examples. We show that if A'saccuracy degradation is not too abrupt, then boosting can still be used to generate ahypothesis whose accuracy is better than 1� �.Schapire [Sch92], noted that the results presented in this paper can be used toshow an interesting relationship between representation and approximation using ma-jority gates. These results were independently discovered by Goldmann, Hastad andRazborov [GHR92]. However, while their proof technique is very elegant, our proof ismore constructive (for details see Section 2.2).It is surprising to note that the boosting algorithm uses only a small fraction of theexamples in the training set. While it needs
(1=�) examples to generate a hypothesisthat has accuracy �, only O(log 1=�) of them are passed to the weak learners. Twointeresting implications arise from this fact. The �rst implication was pointed outto us by Schapire [Sch92]. It can be shown that if a concept class is learnable thenthe following type of compression can be achieved: Given a sample of size m, labeledaccording to some concept in the class, the boosting algorithm can be used to �nda subsample of size O(logm) such that the labeling of all of the instances in thesample can be reconstructed from the labels of the subsample. This strengthens therelationship between compression and learning which has been studied by Floyd andWarmuth [FW93].The second implication was found together with Eli Shamir [Sha92]. We observed4

that if training examples can be accumulated in parallel by several parallel processors,then our methods can translate any PAC learning algorithm to a version that runs intime O(log 1=�) on a parallel computer with �(1=�) processors. This is because mostof the examples that are given to the boosting algorithm are simply discarded and thesearch for a \good" example can be done by many processors in parallel.The Paper is organized as follows. The main Theorem on which our boostingalgorithms are based is given in Section 2 using a simple game-theoretic setting thatavoids some of the complications of the learning problem while addressing the mainunderlying problem. In Section 3 we relate the theorem back to the learning problem,in Section 4 we present some extensions, and in Section 5 we summarize and presentsome open problems.In Section 2 we present a game, called the \majority-vote" game, between twoplayers, a \weightor" and a \chooser". The game consists of k iterations. For simplicitywe now assume that the game is played on the set f1 : : :Ng. In each iteration theweightor assigns to the N points non-negative weights that sum to 1. The chooser hasto then \mark" a subset of the points whose weights sum to at least 1=2 + , where0 < � 1=2 is a �xed parameter of the game. The goal of the weightor is to force thechooser to mark each point in the space in a majority of the iterations, i.e. each pointhas to receive more than k=2 marks. We show that there exists a strategy that letsthe weightor achieve that goal in d12�2 lnNe iterations. A similar game can be playedon a general probability space, in which case the goal of the weightor is to force thechooser to mark all but an � fraction of the space in the majority of the iterations. Weshow that k = d12�2 ln 1=�e iterations su�ce in this case.The weightor in this game represents the centerpiece of the boosting algorithm,which is the choice of the distributions that are presented to the weak learning algo-rithm. The points that the chooser decides to mark correspond to the instances onwhich the weak learner makes the correct prediction. This represents the freedom ofthe weak learner to distribute the error of the hypothesis in any way it chooses as longas the probability that a random instance is labeled correctly is at least 1=2+ . Thisabstraction bypasses some of the complexities of the PAC learning problem, and canbe read independently of the rest of the paper. In Subsection 2.1 we show that inthe case of continuous probability spaces, there is a strategy for the chooser such thatfor any strategy of the weightor, if the game is stopped in less than k = d12�2 ln 1=�eiterations, more than � of the space is marked less than k=2 times, i.e. the weightor failsto achieve its goal. Thus our weighting strategy is optimal for the case of continuousprobability spaces. In Subsection 2.2 we present the implication of our analysis of themajority-vote game on the representational power of threshold circuits.In Section 3 we relate the majority-vote game to the problem of boosting a weaklearner and present the two variants of the boosting algorithm and their performancebounds. In order to simplify our analysis we restrict our analysis in Subsections 3.2and 3.3 to the case in which the weak learning algorithms are deterministic algorithmsthat generate deterministic hypotheses. In Subsection 3.4 we show that this analysisneeds to be changed only slightly to accommodate randomized learning algorithmsthat generate randomized hypotheses. In order to present the complete dependence ofour bounds on the parameters of the problem, we don't use the notational conventionsof polynomial PAC learning in our main presentation, but rather give explicit boundsincluding constants. Later, in Subsection 3.5, we derive upper bounds on the resourcesrequired for polynomial PAC learning that are the best general upper bounds of this5

type that exist to date. In Subsection 3.6 we compare our upper bounds to knownlower bounds and discuss which aspects of our bounds are optimal and which mightbe further improved.In Section 4 we give several extensions and implications of our main results. InSubsection 4.1 we show that our algorithm for boosting by �ltering can work even insituations where the error of the hypotheses generated by the weak learning algorithmis not uniformly bounded for all distributions. In Subsection 4.2 we present a versionof the boosting algorithm that works for concepts whose range is a �nite set, and inSubsection 4.3 we present a version that works for concepts whose range is real valued.In Subsection 4.4 we show how boosting can be used to parallelize learning algorithms.We conclude the paper with a summary and a list of open problems in Section 5. Inthe appendixes to the paper we give a summary of our notation and proofs of threelemmas. The meaning of some of the notation used in this paper has slightly di�erentinterpretations in di�erent parts of the paper. The table in Appendix A.3 summarizesthe di�erent interpretations and might be a useful reference when reading the paper.2 The majority-vote gameIn this section we de�ne a two-player, complete information, zero-sum game. The play-ers are the \weightor", D, and the \chooser", C. The game is played over a probabilityspace hX;�; V i, where X is the sample space, � is a �-algebra over X , and V is aprobability measure. We shall refer to the probability of a set A 2 � as the value ofthe set and denote it by V (A). A real valued parameter 0 < � 1=2 is �xed beforethe game starts.The game proceeds in iterations, in each iteration:1. The weightor picks a weight measure on X . The weight measure is a probabilitymeasure on hX;�i. We denote the weight of a set A by W (A).2. The chooser selects a set U 2 � such that W (U) � 12 + , and marks the pointsof this set.These two-step iterations are repeated until the weightor decides to stop. It thenreceives, as its payo�, the subset of X that includes those points of X that have beenmarked in more than half of the iterations played (if the number of iterations is eventhis set does not include points that have been marked exactly half the time). We shallrefer to this set as the reward set and to its value as the reward. The complement ofthe reward set is the loss set. The goal of the weightor is to maximize the reward, andthe goal of the chooser is to minimize it.The question about this game in which we are interested is whether there existsa general strategy, independent of the speci�c probability space that guarantees theweightor a large reward. An a�rmative answer to this question is given in this section.We describe a general strategy for the weightor such that for any probability spacehX;�; V i and any �; > 0, the weightor can guarantee that the reward is larger than1� � after at most 12(1)2 ln 1� iterations.We shall present the weighting strategy in the following way. We start by givingsome insight, and show what weighting strategies are reasonable. We then present theweighting strategy, and prove a bound on the reward that it guarantees. Finally weshow that for non-singular sample spaces (such as a density distribution on Rn) there6

is a matching strategy for the adversary, implying that our strategy is the optimalminimax strategy when the sample space is non-singular.In the following discussion we are �xing a particular instance of the game, i.e. weconsider a particular sequence of moves taken by the two players. Let k be the numberof iterations in the game. For 0 � i � k de�ne fX i0; X i1; : : : ; X iig to be a partition of Xinto i+ 1 sets where X ir consists of those points in X that have been marked r timesafter i turns of the game have been played.

ss
ss

ssss s sssss
0k1k
k-1kkk

failure32033331110 222201 100number of marksr = 0..i
i = 0..k

successcertain
stage of game certainFigure 2: Transitions between consecutive partitionsAs graphically presented in Figure 2, in iteration i, the chooser decides for eachpoint in X ir whether to mark it or not, thus placing it in X i+1r+1 or in X i+1r . The goal ofthe chooser is to minimize the value of the reward set: [kr=bk=2c+1Xkr . The goal of theweightor is to maximize this value. By giving some points more weight than others, theweightor forces the chooser to mark more of those points. In the extreme, by placingall the weight on a single point it guarantees that this point will be marked while atthe same time allowing the chooser not to mark any other point, moving them closerto the loss set.

7

Let us de�ne some notation (a complete notation table appears in Appendix A.3):k the total number of iterations the game is played.X ir the set of points that have been marked r times in the �rst i iterations.M ir = X ir \X i+1r+1 the subset of X ir that is marked in iteration i.qir = V (X ir) the value of X ir.xir = V (M ir)V (Xir) the fraction of X ir that is marked in iteration i.L the loss set, i.e. those points that are in the end markedless than or equal to half the time.Note that X00 = X and thus q00 = 1.Observe that if r > k=2, then points in X ir are guaranteed to be in the reward set.Likewise, if i � r � k=2 then points in X ir are guaranteed to be in the loss set. Thusit is intuitively clear that any reasonable weighting scheme will give zero weight tothese points and place all the weight on those points for which both failure and successare still possible. In particular, the only points that should be assigned a non-zeroweight in the �nal iteration are points in Xk�1bk=2c. We now present a weighting strategythat agrees with this intuition, and prove that this strategy guarantees the claimedperformance.The weighting strategy assigns a weighting factor �ir to each set X ir where 0 � r �i � k � 1. If the space is discrete then the weight assigned to the point x 2 X ir onround i, is the value of the point times �ir times a constant normalization factor thatmakes the total weight be one (the de�nition of the weighting for non-discrete spacesis given in the statement of Theorem 2.1).The weighting factor is de�ned inductively as follows:�k�1r = (1 if r = bk2c0 otherwise ;and for 0 � i � k � 2: �ir = �12 � ��i+1r + �12 + ��i+1r+1 :Recall that is a parameter of the majority-vote game that is �xed before the gamestarts. Clearly there is only one function of i; k; r and that satis�es this inductivede�nition. It can be veri�ed that this function is the following binomial distribution.�ir = k � i� 1bk2c � r !(12 +)b k2 c�r(12 �)d k2 e�i�1+r : (1)Here, and throughout the paper, we de�ne �nm� = 0 if m < 0 or m > n and �00� = 1.The performance of our weighting strategy is given in the following theorem:Theorem 2.1 For any probability space hX;�; V i and any �; > 0, if the weightorplays the majority-vote game for k iterations, where k satis�esb k2 cXj=0 kj!(12 +)j(12 �)k�j � � ; (2)8

and uses the following weighting in3 iteration iFor any set A in the �-algebra �W (A) = iXr=0V (A \X ir)�ir=Zi ; (3)where Zi = iXr=0V (X ir)�ir ;then the reward at the end of the game is at least 1 � �, independent of the strategyused by the chooser.Before proving the theorem, we de�ne the function �ir over 0 � r � i � k whichwe call the \potential" of the set X ir. As we shall see the potential of X ir predicts, insome sense, the fraction of points in X ir that will end up in the loss set. As at the endof the game we know which points are in the loss set and which are in the reward set,it is reasonable to de�ne the potential for i = k as�kr = (0 if r > k21 if r � k2 : (4)For i < k we de�ne the potential recursively:�ir = �12 � ��i+1r + �12 + ��i+1r+1 : (5)It can be easily veri�ed that a closed form formula for �ir is given by the tail of thebinomial distribution:�ir = b k2 c�rXj=0 k � ij !�12 + �j �12 � �k�i�j : (6)The weight factor function, �ir, is in some sense a discrete derivative of the potentialfunction along the r axis: �ir = �i+1r � �i+1r+1 : (7)The main property of the weighting scheme is that it guarantees that the averagepotential does not increase at any step. This property is proved in the following lemma.Lemma 2.2 If the weighting scheme described in Equation (3) is used by the weightor,then �00 � 1Xr=0 q1r�1r � 2Xr=0 q2r�2r � : : : � kXr=0 qkr�kr ;for any strategy of the chooser.3In the special case where X is discrete, it is su�cient to de�ne the weight of each point. In this case weset W (x) = �irV (x) for all x 2 Xir . 9

Proof of Lemma 2.2: Recall that qir = V (X ir) and xir = V (M ir)V (Xir) . At each iterationi the adversary chooses the variables 0 � xir � 1, and we get the following formula forthe transition to the next iteration:qi+1r = qir�1xir�1 + qir(1� xir) for 1 � r � i ; (8)qi+10 = qi0(1� xi0) for r = 0 ;qi+1i+1 = qiixii for r = i+ 1 :Using this we can get a formula that relates the sum Pir=0 qir�ir for consecutiveiterations.i+1Xr=0 qi+1r �i+1r = qi0(1� xi0)�i+10 + iXr=1[qir�1xir�1 + qir(1� xir)]�i+1r + qiixii�i+1i+1 :and rearranging the sum gives us thati+1Xr=0 qi+1r �i+1r = iXr=0 qir [(1�xir)�i+1r +xir�i+1r+1] = iXr=0 qir�i+1r + iXr=0 qirxir(�i+1r+1��i+1r) : (9)On the other hand, from the weight restriction we get:iXr=0W (M ir) � 12 + ; (10)and as M ir � X ir the de�nition of the weight function gives:1Zi iXr=0V (M ir)�ir � 12 + : (11)Using the de�nitions of qir; xir and Zi this can be written asPir=0 qirxir�irPir=0 qir�ir � 12 + : (12)Using Equation (7) and the fact that �i+1r > �i+1r+1 we get thatiXr=0 qirxir(�i+1r+1 � �i+1r) � (12 +) iXr=0 qir(�i+1r+1 � �i+1r) : (13)Substituting (13) into the right hand side of (9) we �nally get thati+1Xr=0 qi+1r �i+1r � iXr=0 qir�i+1r + (12 +) iXr=0 qir(�i+1r+1 � �i+1r) =iXr=0 qir((12 +)�i+1r+1 + (12 �)�i+1r) = iXr=0 qir�ir :The last equality is based on Equation (5).10

Proof of Theorem 2.1 From Equation (6) it is immediate that the left hand sideof Equation 2 is equal to �00 , thus, by choice of k, �00 � �, which means that the initialexpected potential is small. Combining this with the inequality from Lemma 2.2, thatimplies that the potential never increases, we get that� � �00 � kXr=0�kr qkr :On the other hand, from Equation (4) we have:kXr=0�kr qkr = b k2 cXr=0 qkr = V (L) :Thus the value of the loss set L is at most �.In order to see that the result given in Theorem 2.1 is meaningful, we give anexplicit choice for k that is close to the optimal choice for small � and .Corollary 2.3 Theorem 2.1 holds if the number of iterations satis�esk � 122 ln 12� :Proof: Suppose that a biased coin, whose probability for heads is 1=2 + , is tossedk times. The left hand side of Inequality (2) describes the probability that at mosthalf of the coin tosses come up heads. We can upper bound the probability of thisevent as follows. The number of sequences of k coin tosses that have at least as manyheads as tails is at most 2k�1. The probability of any single sequence is at most[(1=2�)(1=2+)]k=2. Thus we get that a su�cient condition on k for Inequality (2)to hold is 2k�1 [(1=2�)(1=2+)]k=2 � � :Reordering this inequality we get that it is equivalent tok=2 � ln 12�� ln(1� 42) :Using the fact that ln(1�x) � �x for 0 � x < 1 we �nd that the condition on k in thestatement of the corollary is a su�cient condition condition for Inequality (2).2.1 Optimality of the weighting schemeWe shall now show that, in some natural cases, the weighting strategy devised in thissection is optimal in that it guarantees the weightor the minimal possible loss whichis achievable in k iterations. We show this by giving a strategy for the chooser whichguarantees a loss which is at least as large as the loss which our weighting strategysu�ers. The idea of the choosers strategy is to mark points so that the values of themarked sets are equal to the expected value if the points where marked independentlyat random with probability 1=2 + .We now de�ne a property of the probability space hX;�; V i which is su�cient forshowing optimality of our weighting scheme. We say that hX;�; V i is divisible if for11

any measurable set A 2 � there exists another set A0 2 � such that V (A0) = 12V (A).One natural example of a divisible space is the Euclidean space X = Rn, where � isthe Borel algebra over Rn and the measure V is a density measure that assigns allsingle points a value of zero.The weighting strategy de�ned in this section is optimal for divisible probabilityspaces, as is summarized in the following theorem.Theorem 2.4 If the probability space hX;�; V i is divisible, then there exists a strategyfor the chooser such that for any k and , the loss is at leastb k2 cXj=0 kj!(12 +)j(12 �)k�j : (14)This means that the choice of k in Equation 2 of Theorem 2.1 is the smallest possible.In order to prove the theorem, we need the following technical lemma, whose proofis given in the appendix.Lemma 2.5 Suppose that the probability space hX;�; V i is divisible, and that W isanother probability measure de�ned on hX;�i.Then for any set A 2 � there exists a set A0 � A;A0 2 � such that V (A0) =(1=2 +)V (A) and W (A0) � (1=2 +)W (A)Proof of the theorem: Let us denote the set of points in X that have been markedin a particular way by Xs, where s =< s1; s2; : : : ; si > is a binary vector of lengthi � k such that sj is 1 if x has been marked on iteration j and 0 otherwise. The goalof the chooser is to mark points so that for each sequence of marks s, the probabilityof Xs would be equal to the probability that s is generated by i random draws of abiased coin whose probability of heads is 1=2 + .The strategy is de�ned as follows. In the ith iteration, the space X is divided intothe 2i�1 sets Xs corresponding to the di�erent binary sequences of length i� 1. FromLemma 2.5 we get that for each s the exists a set As � Xs in � such that such thatV (As) = (1=2 +)V (Xs), and W (As) � (1=2 +)W (Xs). The chooser marks thepoints in the set [sAs which makes Xs1 be As and Xs0 be Xs \ As. This is a legalmarking because of the condition on W (As).The loss set is [(Xsjs =< s1; : : : ; sk >; kXi=1 si � k2)It is easy to calculate the value of the loss set and show that it is equal the loss de�nedin (14), which completes the proof.It is easy to construct cases of non-divisible spaces. In particular, any �nite spaceis not divisible. This, it is very likely that some improvement to the results given inthis paper are possible for �nite sample spaces. However, it seems that the possibilityfor improvement decreases rapidly as the size of the sample space increases.12

2.2 The representational power of majority gatesOur analysis of the majority-vote game can be used to prove an interesting resultregarding the representation of Boolean functions as a majority over other Booleanfunctions. This application of boosting has been discovered by Schapire [Sch92]. Aslightly weaker version of this result was independently proven by Goldmann, Hastad,and Razborov [GHR92] using a completely di�erent proof technique. In the followingpresentation we follow their notation.Let f denote a Boolean function whose domain is f�1; 1gn and range is f�1; 1g. LetH be a set of Boolean functions de�ned over the same domain and range. Intuitively,the result is that if, for any distribution over the domain f�1; 1gn, there is somefunction h 2 H such that f and h are correlated, then f can be represented as amajority over a small number of functions in H .In order to give the formal statement we de�ne the following notation. We use Dto denote a distribution over the domain f�1; 1gn and de�ne the correlation betweenf and H with respect to D asDDH(f) := maxh2H ED[f(x)h(x)] :The distribution-free correlation between f and H is de�ned asDH(f) := minD DDH(f) :The majority function is de�ned as followsMAJ(x1; : : : ; xk) = sign kXi=1 xi! ;where sign(x) = � 1; if x � 0�1; otherwise :Using our boosting algorithm we prove the following result:Theorem 2.6 Let f be a Boolean function over f�1; 1gn and H be a set of functionsover the same domain. Then if k > 2 ln(2)nD�2H (f), then f can be represented asf(x) =MAJ(h1(x); : : : ; hk(x)) ;for some hi 2 H.Proof: Assume the majority-vote game is played over the domain f�1; 1gn andthat the value of a set is the number of points in it divided by 2n. Assume thechooser in the majority-vote game chooses which points to mark by selecting a func-tion h 2 H such that PrD(h(x) 6= f(x)) � 1=2 � and marking all x such thath(x) = f(x). By de�nition of DH(f), such a function exists for every distribution D if = DH(f)=2. Theorem 2.1 provides us with a method for selecting the distributionsDi, which correspond to the the weightings Wi. This selection guarantees that themajority over the corresponding hypotheses will be very close to f . More speci�cally,it guarantees that if k = 1=2�2 ln 1=�, the number of points x 2 f�1; 1gn such thatMAJ(h1(x); : : : ; hk(x)) 6= f(x) is smaller than �2n, by setting � < 2�n we guarantee13

that MAJ(h1(x); : : : ; hk(x)) = f(x) for all x 2 f�1; 1gn. Plugging our selection for and � into k = 1=2�2 ln � we �nish the proof.Goldmann, Hastad and Razborov ([GHR92]), prove Theorem 2.6 using a elegantapplication of von Neumann's Min-Max Theorem. However, their proof does not showhow one can �nd the functions hi 2 H . On the other hand, our proof is constructive inthat it shows how to generate the distributions that correspond to the desired functions.For completeness we give a simple lemma (Lemma 4 in [GHR92]) that gives anapproximate converse to Theorem 2.6.Lemma 2.7 Let f and H be as in Theorem 2.6. Then if f can be represented asf(x) =MAJ(h1(x); : : : ; hk(x)) ;where hi 2 H and k is odd, then DH(f) � 1=k.Proof: From the de�nition of the majority function and the fact that k is odd, we getthat for every x 2 f�1; 1gn, there are at least (k+1)=2 indices i such that hi(x) = f(x).Fixing any distribution D over f�1; 1gn, we get thatkXi=1PrD (hi(x) = f(x)) = Xx2f�1;1gnPrD (x : jf1 � i � k j hi(x) = f(x)gj � (k + 1)=2) :The pigeon-hole principle guarantees that there exists at least one index 1 � i � ksuch that PrD (hi(x) = f(x)) � (k + 1)=2. This implies that DDH(f) � 1=k. As thisholds for all D, we get the statement of the lemma.3 Boosting a weak learner using a majorityvoteIn this section we shall describe the connection between the majority-vote game andthe problem of boosting a weak learning algorithm.We start by presenting a minimal formal framework for analyzing our boostingalgorithms. We then present our algorithms and their analysis. Later, in Section 3.5,we give a more complete notational framework, and use this framework to relate ourresults to other results in PAC learning theory.3.1 PreliminariesWe start by giving the de�nitions of a minimal framework of distribution-free conceptlearning that is needed for presenting our main results. A concept is a binary-valuedmapping over some domain X . We use the letter c to denote a concept and c(x) todenote the label of the instance x according to the concept c. A concept class C is acollection of concepts.44In order to de�ne polynomial PAC learnability, the complexity of the sample space and of the conceptclass need to be parameterized. In our initial basic setting we suppress this parameterization and the issueof polynomial versus non polynomial learning, we return to fully discuss this issue in Section 3.5.14

The learner's task is to learn an approximation to a concept c. The learner knowsa-priori that the concept is in some known class C, but has no prior knowledge ofthe speci�c choice of c 2 C. The learner is assumed to have access to a source EXof examples. Each time EX is called, one instance is randomly and independentlychosen from X according to some �xed but unknown and arbitrary distribution D.5The oracle returns the chosen instance x 2 X , along with its label according to theconcept c, which is denoted c(x). Such a labeled instance is called an example. Weassume EX runs in unit time.Given access to EX the learning algorithm runs for some time and �nally outputsa hypothesis h. The hypothesis is a description of an algorithm (possibly probabilistic)that receives as input an instance x 2 X and generates a binary output. This outputis called the \prediction" of the hypothesis for the label c(x). We write P (h(x) = c(x))to indicate the probability, over the distribution D on X and random coin ips of thehypothesis, that the hypothesis correctly predicts the labels of the concept c. Thisprobability is called the accuracy of the hypothesis h. The probability P (h(x) 6= c(x))is called the error of h with respect to c under D; if the error is no more than �, thenwe say h is �-good with respect to the target concept c and the distribution D.We say that a learning algorithm A has a uniform sample complexity m(�; �) if itachieves the following performance. For all 0 < �; � < 1, all D, and all c 2 C, afterreceiving the parameters � and � as inputs, algorithm A makes at most m(�; �) callsto EX and outputs a hypothesis h that with probability at least 1 � � is an �-goodapproximation of c under D. Similarly we de�ne the time and space complexity of A tobe functions that bound the time and space required by A and denote them by t(�; �)and s(�; �) respectively. If a learning algorithm cannot achieve some values of � and �,or if the resources required for achieving these values are not uniformly bounded for alldistributions and concepts, we de�ne m(�; �); t(�; �) and s(�; �) to be in�nite for thesevalues.The concept of a boosting algorithm was �rst presented by Schapire in [Sch90]. Aboosting algorithm is a learning algorithm that uses as a subroutine a di�erent learningalgorithm. The goal of the boosting algorithm is to e�ciently generate high-accuracyhypotheses using a learning algorithm that can e�ciently generate only low-accuracyhypotheses. The boosting algorithm invented by Schapire [Sch90], was a breakthroughin that it showed that any polynomial time learning algorithm that generates hypothe-ses whose error is just slightly smaller than 1=2 can be transformed into a polynomialtime learning algorithm that generates hypotheses whose error is arbitrarily small. Theboosting algorithms presented in this paper achieve better performance than thosepresented by Schapire and the resulting hypotheses are simpler. A comparison of theperformance of the algorithms is given in Section 3.5.We use the generic nameWeakLearn to refer to the learning algorithm whose per-formance we wish to boost, and we refer to those hypotheses generated byWeakLearnthat have the guaranteed accuracy as weak hypotheses. We assume that there existsome real values 0 � �0 < 1=2 and 0 � �0 < 1 such that WeakLearn, given m0 exam-ples labeled according to some concept c 2 C, generates a hypothesis whose error is atmost �0 (i.e. a weak hypothesis) with probability at least 1 � �0 over the distribution5More formally, we assume that hX;�;Di is a probability space, and that C is a set of functions that aremeasurable with respect to �. Moreover, we assume that all subsets of X that are considered in this paperare measurable with respect to �. 15

of the training examples. We denote by m0; t0; and s0 uniform upper bounds on thesample size, time, and space required by WeakLearn to achieve this accuracy. Theboosting algorithms that we shall describe are able to generate hypotheses of arbitraryaccuracy � with arbitrarily high reliability 1� �.The parameters �0 and �0 measure the discrepancy between the performance ofWeakLearn and the performance of an \ideal" learning algorithm that always gener-ates a hypothesis that has no error with respect to the target concept. The performanceof the weak learning algorithms that we discuss is extremely poor. They are almostcompletely unreliable, and even when they succeed, they output a hypothesis whoseerror is close to that of a random guess. We thus �nd it useful to de�ne two newquantities = 1=2� �0 and � = 1��0. These parameters measure how far the learningalgorithm is from a completely useless algorithm and arise naturally in the design andanalysis of our boosting algorithms. We shall show that the resources required by ouralgorithms are uniformly bounded by functions whose dependence on 1=; 1=�; 1=�, and1=� is either logarithmic or low-order polynomial.For the main part of our analysis, in Sections 3.2 and 3.3, we restrict ourselvesto boosting deterministic learning algorithms that generate deterministic hypotheses.Later, in Section 3.4, we show that all of our algorithms and their analysis hold, withvery little change, for the case that the learning algorithm and the resulting hypothesesare randomized.3.2 Boosting using sub-samplingOne simple way of applying the results of the majority-vote game to boost the per-formance of WeakLearn is by using it to �nd a small hypothesis that is consistentwith a large set of training examples. The algorithm BSamp, which is summarized inFigure 3, is based on this principle.The �rst step of BSamp is to collect a training set. Formally, this means makingm calls to EX, generating the set S = f(x1; l1); : : : ; (xm; lm)g.6 The goal of boostingis to generate a hypothesis that is correct on all examples in S.As the sample is a �nite set of size m, the requirement that a hypothesis is correcton all points in the sample is equivalent to the requirement that the hypothesis haserror smaller than 1=m with respect to the uniform distribution on the sample. Inorder to do that, BSamp generates di�erent distributions on the training sample, andeach time calls WeakLearn to generate a weak hypothesis, that is, a hypothesis thathas error smaller than 1=2� with respect to the given distribution. Each di�erentdistribution forces WeakLearn to generate a weak hypothesis whose errors are ondi�erent sample points.7 The goal of the boosting algorithm is to control the locationof these errors in such a way that after a small number of weak hypotheses have beengenerated, the majority vote over all weak hypotheses will give the correct label oneach point. In other words, for each point in S, the fraction of the weak hypothesesthat assign the point with the correct label is larger than half.86In many actual machine learning scenarios, the training set S is the basic input to the learning algorithm,and thus this step is only formal.7Ignoring, for a moment, the fact that WeakLearn has probability �0 of failing to generate a weakhypothesis.8Here, and in the rest of this section, we make no assumption about the output of the majority vote when16

Algorithm BSampInput: EX,WeakLearn, ;mOutput: A hypothesis that is consistent on a random sample of size m.1. Call EX m times to generate a sample S = f(x1; l1); : : : ; (xm; lm)g.To each example (xj ; lj) in S corresponds a weight wj and a count rj.Initially, all weights are 1=m and all counts are zero.2. Find a (small) k that satisfieskXi=dk=2e ki!(1=2�)i(1=2 +)k�i < 1m(For example, any k > 1=(22) ln(m=2) is sufficient.)3. Repeat the following steps for i = 1 : : :k.(a) repeat the following steps for l = 1 : : :(1=�) ln(2k=�)or until a weak hypothesis is found.i. Call WeakLearn, referring it to FiltEX as its source of examples,and save the returned hypothesis as hi.ii. Sum the weights of the examples on which hi(xj) 6= lj.If the sum is smaller than 1=2� then declare hi a weak hypothesis and exit the loop.(b) Increment rj by one for each example on which hi(xj) = lj.(c) Update the weights of the examples according to wj = �irj,�ir is defined in Equation (1).(d) Normalize the weights by dividing each weight by Pmj=1 wj.4. Return as the final hypothesis, hM, the majority vote over h1; : : : ; hk.Subroutine FiltEX1. choose a real number x uniformly at random in the range 0 � x < 1.2. Perform a binary search for the index j for whichj�1Xi=1 wi � x < jXi=1wi(P0i=1 wi is defined to be zero.)3. Return the example (xj ; lj)Figure 3: A description of the algorithm for boosting by sub-sampling17

The problem of generating these distributions is equivalent to the problem of thebooster in the majority-vote game described in the previous section, under the followingcorrespondence of terms. The value of a point corresponds to the probability assigned tothe point by the target distribution (the uniform distribution in our case). The weightof a point corresponds to the probability assigned to it by the boosting algorithm. Thedecision of the adversary to mark a point corresponds to the decision by WeakLearnto generate a weak hypothesis that is correct on the point. The reward set correspondsto the set on which the majority vote over the weak hypotheses is correct and the lossis the probability that the majority makes a mistake, measured with respect to thetarget distribution. This correspondence lies at the center of the analysis of algorithmBSamp.Before we give the �rst theorem regarding the performance of BSamp we mustaddress the fact that WeakLearn is not guaranteed to always generate a weak hy-pothesis. This event is only guaranteed to happen with probability �. However, itis easy to check the hypothesis returned by WeakLearn and calculate its error onthe sample. If this error is larger than �0 = 1=2 � , WeakLearn is called again,using a di�erent subset of the examples in S.9 This is the role of statement 3.a.ii ofBSamp. However, this test has non-zero probability of failing any arbitrary numberof times. In order to guarantee that the boosting algorithm has uniform �nite runningtime, BSamp tests only a pre-speci�ed number of hypotheses. As we shall show in thesecond part of the proof of Theorem 3.2, the probability that all these hypotheses willhave error larger than �0 is smaller than �=2. The following theorem shows that if allk iterations manage to �nd a weak hypothesis, then the �nal hypothesis generated byBSamp is consistent with all the labels in the sample.Theorem 3.1 If all the hypotheses that are used by algorithm BSampare �0-good, thenthe hypothesis hM , output by BSamp, is consistent on the sample S.Proof: From the correspondence with the majority-vote game de�ned above, and fromTheorem 2.1, we get that the error of the hypothesis output by BSamp is smaller than1=m, As the target distribution is uniform it assigns each point in S with probability1=m. Thus the output hypothesis must be correct on all points in S.Two issues remain in order to show that BSampis an e�ective learning algorithm.First, we need to show that there is a way for selecting m, the size of the sample S, sothat the hypothesis generated by BSamp, which is guaranteed to be consistent on S,will also have a small probability of error on a random example outside of S. Second,we need to show that the algorithm uses uniformly bounded resources.The fact that using a large enough sample guarantees that a consistent hypothesiswill have small error on the whole domain stems from the fact that k, the numberof hypotheses that are combined by the majority rule, increases like O(log jSj), aswas proven in Corollary 2.3. Before getting into a detailed proof, let us give a roughsketch of a proof for a simple special case. Assume that the hypotheses generatedby WeakLearn are chosen from a �nite set of hypotheses H . Denote the set ofthe number of votes is split evenly. When we calculate upper bounds on the probability of mistake we usethe pessimistic assumption that all these cases are decided incorrectly. We use the opposite assumption forthe lower bounds.9Note that as WeakLearn is guaranteed to succeed with probability at least � on any distribution overthe sample space, it is guaranteed to succeed on the uniform distribution over S.18

hypotheses generated by BSamp by HM . The size of HM is jH jc logm, where c =1=(22). Following the well-known analysis of the Occam's razor principle [BEHW87]we get that the probability that the �nal hypothesis is consistent with a random sampleof size m but has error larger than � is smaller than jHM j(1� �)m = jH jc logm(1� �)m.This quantity decreases rapidly with m. In particular, selecting m large enough thatm � (1=�)(log(1=�) + (1=22) logm log jH j), guarantees that the hypothesis will haveerror smaller than � with probability larger than 1� �.Although this simple analysis gives the correct orders of magnitude, it is incompletein that it depends on the size of H . In many cases this size is very large, moreover,oftenH is in�nite or even uncountable. These cases can be analyzed using the notion ofVC-dimension. However, Schapire [Sch90], suggested the following elegant proof thatis based only on the assumption that the size of the sample used by WeakLearn isuniformly bounded. Although the �nal hypothesis is guaranteed to be consistent withthe whole sample, which is of size m, the number of examples from the sample thatare ever used by WeakLearn is O(logm). In other words, for large m only a smallfraction of the training examples are ever used by WeakLearn!This small subset of S ordered in the way which they were generated by FiltEXcan be seen as a representation of the �nal hypothesis, hM . For the sake of analysis wecan imagine replacing BSamp by the following version, which has the same externalfunctionality. Instead of saving the hypotheses generated by WeakLearn, the boost-ing algorithm saves the sets of examples that were returned by FiltEX when it wascalled by WeakLearn. Later, when the value of hM (x) has to be calculated on somenew example x, WeakLearn is rerun. The saved sequences of examples are used byWeakLearn to regenerate the weak hypotheses;10 then using these weak hypotheses,hM (x) is reconstructed. Representing hypotheses by means of a subset of the trainingexamples has been further studied by Littlestone, Warmuth and Floyd [LW86, FW93].We now use prove a bound on the size of the sample that BSamp has to use inorder to guarantee that the �nal hypothesis has error smaller than �. In the proof ofthis theorem we use a technique invented by Littlestone and Warmuth [LW86] in theabove mentioned work which appears as Appendix A in [FW93].Theorem 3.2 Let WeakLearn be a deterministic learning algorithm that generates,with probability � > 0 over the random training examples with which it is trained, adeterministic hypothesis whose error is smaller than 1=2� , for some > 0. Assumethe number of training examples required to achieve this is uniformly bounded by m0.Then the hypothesis hM generated by BSamp has the following property.For any �; � > 0, if BSamp uses a sample of size at least m, wherem � 1� ln 2� + m02 � lnm+ 1 �2! ;then the probability that hM has error larger than � is smaller than �. Here the proba-bility is de�ned over the random choice of the sample S and over the internal randomcoin ips in BSamp,10Note that this analysis is valid only when WeakLearn is deterministic. In Section 3.4 we show how toanalyze the non-deterministic case. 19

Proof: We are interested in bounding the probability of the set of samples and internalcoin ips of BSamp that generate a hypothesis that has error larger than �. We dothat by covering this set by two disjoint sets. The �rst set is the set of samples andcoin ips that cause BSamp to generate a hypothesis that is consistent with the sampleand yet has error larger than �. The second is the set of samples and coin ips thatcause BSamp to generate a hypothesis that is inconsistent with the sample. The �rstand second parts of the proof bound the probabilities of these two sets respectively.Part 1: We want to show that there is only a small probability that a randomsequence of training examples S = h(x1; l1); : : : ; (xm; lm)i labeled according to c 2 C,can cause BSamp to generate a hypothesis that is consistent with S but has errorlarger than �.We �rst sketch the argument. We consider the following mapping of arbitrarysequences of km0 labeled examples into hypotheses. The sequence is partitioned into kblocks of length m0, each block is fed intoWeakLearn. Using this blockWeakLearngenerates a hypothesis.11 Finally, these k hypotheses are combined by a majority voteto generate a single hypothesis. We de�ne two properties on sequences chosen out ofS that are based on the hypothesis to which these sequences are mapped. The �rstproperty is that the hypothesis is consistent with all the examples in S; the secondproperty is that the hypothesis has error larger than � with respect to the distributionD and the underlying concept. We call sequences that have both properties \bad"sequences. We show that the probability of a sample S from which a bad sequencecan be chosen is very small. However, if by using some sequence of coin ips, BSampcan generate a consistent hypothesis that has a large error, then there exists a wayof choosing a bad sequence out of S, which means that the probability of BSampgenerating such a hypothesis is small.To bound the probability of samples S from which a bad sequence can be chosen,one can view the elements of S that are not in the sequence as random test points onwhich the hypothesis is tested. As most of the points in S are not in the sequence, itis very unlikely that the hypothesis is consistent with all these examples and yet has alarge probability of making an error. This observation, together with the fact that thetotal number of sequences of km0 elements from S is not too large, gives us the proofof this part of the theorem.We now give the formal proof, which is an adaptation of a technique used by War-muth and Littlestone in [LW86]. Fix any concept c 2 C. Let S = h(x1; l1); : : : ; (xm; lm)ibe the sequence of randomly drawn training examples returned by EX in step 1 of aspeci�c run of BSamp such that for all i, li = c(xi). Let S 0 = h(xt1 ; lt1); : : : ; (xtd; ltd)idenote a sequence of examples chosen out of S.Let T be the collection of allmd sequences of length d = km0 of integers in f1 : : :mg.For any sequence of examples S = h(x1; l1); : : : ; (xm; lm)i and for any T 2 T we denoteh(xt1; lt1); : : : ; (xtd; ltd)i by S 0T . We denote the hypothesis to which this sequence ismapped by the mapping de�ned above by hM(S 0T).Fixing T , let UT be the set of all sequences of examples S such that the hypothesishM (S0T) has error larger than �. Recall that the error of hM is the probability, withrespect to the distribution D, of the symmetric di�erence between hM and c. Let CTbe the set of all sequences S such that hM(S 0T) is consistent with all the examplesin S. Observe that each run of BSamp in which it generates a consistent hypothesis11we assume thatWeakLearn is deterministic and returns a hypothesis for any sequence of m0 examples.20

corresponds to a sequence of indices T such that CT contains the training set S that wasused by the algorithm. If BSamp has non-zero probability of generating a consistenthypothesis that has a large error when using the sample S, then there must exist someT 2 T such that S 2 CT \ UT . We can thus upper bound the probability of failureover the random choice of S, by requiring thatXT2T Pm(CT \ UT) � �=2 :The choice of the hypothesis hM (h(xt1; lt1); : : : ; (xtd; ltd)i) is only a function of the delements of S 0T . If S 2 UT , the hypothesis has probability at least 1 � � of makinga mistake on any of the remaining m � d elements of S which are chosen at random,independently of the elements in S 0T and of the fact that S 2 UT . Thus the probabilitythat S is in CT , given that it is in UT , is at most (1��)m�d. Multiplying this probabilityby the size of T we get md(1� �)m�d � �=2 : (15)By substituting d = km0 we �nd that it is su�cient to require thatmkm0(1� �)m�km0 � �2 ;which can be translated to the following stronger requirement on m:m � 1� �ln 2� + km0(lnm+ �)� :We now use 1=(22) ln(m=2) as a choice for k, the number of weak hypotheses that arecombined by WeakLearn. Corollary 2.3 shows that this choice obeys the inequalityof line 2 in BSamp. We thus get that it is su�cient to require thatm � 1� �ln(2=�) +m0 ln(m=2)22 (lnm+ �)� :As the statement of the theorem places a slightly stronger requirement on the minimalvalue ofm, we get that ifBSamp generates a consistent hypothesis than this hypothesishas error smaller than � with probability at least 1� �=2.Part 2: We now bound the probability that BSamp generates a hypothesis thatis not consistent with the sample. From Theorem 3.1 we know that if all of the khypotheses generated by WeakLearn have error smaller than �0 with respect to thecorresponding weightings of the sample, then the �nal hypothesis is consistent withthe whole sample. It thus remains to be shown that for any sample S, the probability,over the random choice made in BSamp that any of the k hypotheses generated byWeakLearn has error larger than �0 is smaller than �=2k.Note that each time a hypothesis is returned from WeakLearn its error on theweighted sample is checked, and it is rejected if the error is too large. Thus the onlycase in which a hypothesis used by BSamp has an error larger than �0 is when allof the iterations of statement 3.a fail to generate a hypothesis with small error. Asthe probability that any single call to WeakLearn generates a good hypothesis is atleast �, the probability that all of the (1=�) ln(2k=�) runs of WeakLearn performedin statement 3.a fail to generate a good hypothesis is at most(1� �)(1=�)ln(2k=�) � �2k :21

Thus the probability that any of the k hypotheses used is not good is at most �=2.Theorem 3.2 gives a uniform upper bound on the sample complexity of BSamp.The bound is given in terms of an implicit inequality on m, which cannot be writtenas an exact explicit bound. The following corollary gives an explicit upper bound onthe sample complexity needed for boosting using BSamp.Corollary 3.3 Let WeakLearn be a deterministic learning algorithm that generates,with probability � > 0 over the random training examples with which it is trained, adeterministic hypothesis whose error is smaller than 1=2� , for some > 0. Assumethe number of training examples required to achieve this is uniformly bounded by m0.Then, given any �; � > 0, if BSamp is required to generate a hypothesis that is consistentwith a sample of size m � max�208; 2� ln 2� ; 16m0�2(ln m0�2)2� ;then with probability larger than 1 � �, the hypothesis output by BSamp has errorsmaller than �.Proof: We want to �nd m that will satisfy:m � 1� ln 2� + m02 � lnm+ 1 �2! :It su�ces if m is larger than the maximum of twice each of the two terms in the righthand side. From the �rst term we get m > 2� ln 2� . To bound m with respect to thesecond term, we observe that, in general, in order to satisfym > a(lnm+1)2 it su�cesto choose m = 16a(lna)2, if a � 5. It thus su�ces if m > 16a(ln a)2 = 16 � 5 � (ln 5)2 ,or if m > 208.We now discuss the time and space complexity of BSamp. One easily observes thatthe total number of times that WeakLearn is called isO(k� ln 2k�) = O� lnm2� �ln 12� + ln lnm�� :On the other hand, statements 3.a.ii, 3.b, 3.c and 3.d in Figure 3, that test andupdate the weights associated with the sample, each take O(m) time to execute. Itis thus clear that for large values of m, the time complexity of BSamp is dominatedby the time for manipulating the sample and not by the time taken by WeakLearn.This gives the BSamp a time complexity of O((km=�) ln(k=�)).The space complexity of BSamp is dominated by the storage of the sample. Thesample size is, ignoring log factors, ~O(1=�) (Corollary 3.3), while the storage of thehypotheses generated by WeakLearn is O(k) = O(1=2 log 1=�). In the next sectionwe present a di�erent boosting algorithm whose space complexity is O(log 1=�) ratherthan ~O(1=�).3.3 Boosting Using �lteringIn the previous section we have developed one way of applying the optimal weightorstrategy for the majority-vote game to the problem of boosting a weak learner. While22

the complexity bounds for this method are reasonably good, considerable improvementis possible in the space complexity. The space complexity of BSamp is dominated bythe storage of the training examples. In some applications the training set is in thememory anyway and this cost is taken for granted. However, in other cases (such ason-line learning), storing all the training examples in memory might be very expensive.Recall that in order to �nd a hypothesis with error smaller than �, only O(log(1=�))out of the O(1=�(log(1=�))2) training examples in the sample are ever used by the weaklearning algorithm. In this section we present algorithms that select the examples usedby WeakLearn in an on-line fashion from the sequence of examples supplied by EX.This avoids storing many examples in memory and decreases the space complexityto O(log(1=�)). Selecting examples directly out of the input stream is the basis ofSchapire's boosting algorithm [Sch90]. Schapire used the term \�ltering" to describethis process. The selection is viewed as a \�lter" that lies between the source ofexamples, EX, and the weak learning algorithm. This �lter observes each examplegenerated by EX and either rejects it and throws it away, or accepts it and passes iton to WeakLearn.The description of the algorithm is given in Figure 4. The overall structure of thealgorithm is very similar to that of BSamp. The boosting algorithm generates k weakhypotheses by calling WeakLearn k times, each time presenting it with a di�erentdistribution over the training examples. However, while in BSamp the examples aredrawn from a set of examples that is �xed, once and for all, at the beginning of theprocess, in BFilt new examples are continually drawn from the sample space by callingEX. Each time a new example is drawn, its weight is calculated, and a stochasticdecision is made whether to accept or reject the example, such that the probabilityof acceptance is proportional to the weight. The proportionality constant, 1=�imax,is chosen so as to maximize the probability of accepting a random example withoutviolating the condition that the probability of acceptance should be in the range [0; 1].The analysis of BFilt corresponds to playing the majority-vote game directly onthe sample space, X , and the input distribution D, and not on the uniform distributionover a sample, as is the case with BSamp. This simpli�es the analysis with respectto the analysis of BSamp in that there is no gap between the expected error on thetraining set and the expected error on a random example. On the other hand, theanalysis becomes more involved as a result of the following potential problem. It mighthappen that during some iterations of statement (2) a large fraction of the examplesgenerated by EX are rejected. As a result, the number of examples that have to be�ltered in order to generate the training examples required by WeakLearn becomesprohibitively large. Luckily, as we shall show, the accuracy of the hypotheses that aregenerated by WeakLearn in such iterations has very little inuence on the accuracyof the �nal hypothesis, hM , that is the �nal result of BFilt.We use this property by de�ning an \abort" condition. This condition, de�nedat the bottom of Figure 4, detects iterations in which the fraction of accepted exam-ples is small. We refer to such an event as triggering the abort condition. When theabort is triggered, it stops the execution of procedure FiltEX and the run of proce-dure WeakLearn that called it, and returns control to statement (2.b). A randomhypothesis is then put in place of the hypothesis that was supposed to be generatedby WeakLearn. The random hypothesis is simply an algorithm that for any x 2 Xgenerates a label in f0; 1g by ipping a fair coin. The abort condition is de�ned asa function of two counters, #accept and #reject that are incremented each time an23

Algorithm BFiltInput: EX,WeakLearn, ; �; �; �Output: A hypothesis hM , that has error smaller than � with probability at least 1� �.1. Find a (small) k that satisfieskXi=dk=2e ki!(1=2� =2)i(1=2 + =2)k�i < �2(For example, k � 4=2 ln(1=�) suffices)2. Repeat the following steps for i = 0 : : :k � 1,setting #accept and #reject to zero before each iteration.(a) Call BRel, referring it to FiltEX and WeakLearn.If BRel does not abort it generates a hypothesis: hi+1,whose error is smaller than 1=2� =2 with probability at least 1� �=2k.(b) If BRel aborts, then define hi+1 to be a hypothesis that always makes arandom prediction using a fair coin.3. Return as the final hypothesis, hM, the majority vote over h1; : : : ; hk.Subroutine FiltEXRepeat the following command until an example is accepted or until the abortcondition is satisfied.1. Call EX, and receive a labeled example (x; l).2. If i = 0 then accept the example and return, else continue to 3.3. Set r to be the number of indices 1 � j � i such that hj(x) = l, and calculate�ir = k � i� 1bk2 c � r !(1=2 + =2)b k2 c�r(1=2� =2)d k2 e�i�1+r ; �imax = max0�r�i�ir4. choose a real number x uniformly at random from the range 0 � x � 1.5. If x < �ir=�imax then accept the example, and return it as the result,else reject it and jump to 1.In each case, update #accept and #reject accordingly.The abort condition:#accept+ #reject > k�imax�(1� �) max #accept; 4 ln 8k2�imax��(1� �) !Figure 4: A description of the algorithm for boosting by �ltering.24

example, generated by EX is accepted or rejected respectively. Both counters are resetto zero each time the index i in statement (2) is incremented.In order to analyze Algorithm BFilt we need to go back to the analysis of theunderlying majority-vote game. In order to do that we introduce again some of thenotation used in Section 2 and de�ne it in the context of our new problem.LetX be the sample space over which a probability distribution D is de�ned. De�nefX i0; X i1; : : : ; X iig to be a partition of X into i + 1 sets where X ir consists of that setof the sample space that is labeled correctly by r out of the �rst i hypotheses. De�nethe following quantities related to this partition (a complete notation table appears inAppendix A.3):M ir = X ir \X i+1r+1 the subset of X ir that is correctly labeled by the i+ 1st hypothesisqir = Pr(X ir)xir = Pr(M ir)Pr(Xir) the probability of a random example to be correctly labeled by hMgiven that it is in X irti =Pir=0 qir�ir The probability of accepting a random example duringthe construction of hi+1 is ti=�imax.We start our analysis by quantifying the reliability of the abort condition. Wesay that the triggering of the abort condition is justi�ed if ti < 2�(1 � �)=(k). Thefollowing lemma shows that most trigerring events are justi�ed.Lemma 3.4 For all 0 � i � k�1, the probability, over the distribution of the examples,that an abort is triggered during the generation of hi+1, given that ti � 2�(1� �)=(k),is smaller than �=2k.Proof: We start by recasting the abort condition in a notation that is more convenientfor the analysis. Let n = #accept + #reject and m = #accept. We de�ne theconstants c = 2�(1��) = k�imax and n0 = (8=c) ln(16k=c�). Using this notation we seethat an abort occurs after testing the nth example if and only if n > n0 and m < cn=2.We use q = ti=�imax to denote the probability that FiltEX accepts a random examplegenerated by EX. Thus the claim that we want to prove is that if q � c then theprobability of an abort (during any one of the k iterations) is smaller than �=2k. Thisprobability can be written as a sum of the probabilities of aborting after each exampleafter example number n0. We can bound the probability of aborting after the nthexample using Cherno� bounds as follows:Pr(m < cn=2) � e�cn=8 :Summing this probability over all possible values of n we get thatPr(abort occurs after n > n0 examples) < 1Xn=n0 e�cn=8 = e�cn0=81� e�c=8 < 8ce�cn0=8 < �2k ;which proves the claim.In order for the algorithm BFilt to work successfully, we need the reliability ofWeakLearn to be high. However, as noted by Haussler et. al. [HKLW91], it is easy to25

boost the reliability of a learning algorithm. We give the performance of one possiblereliability-boosting algorithm, BRel in the following lemma. The proof of the lemmaand the description of the algorithm are given in Appendix B.Lemma 3.5 Assume WeakLearn is a learning algorithm that generates hypotheseswhose error is smaller than 1=2� with probability at least � > 0, using m0 examples.Then, for any � > 0, Algorithm BRel, will generate hypotheses whose error is smallerthan 1=2� =2 with probability 1 � �. Furthermore, the number of examples requiredby algorithm BRel is at most82 �ln ln 2� + ln 1���+ m0� ln 2� :We now give the two main theorems regarding BFilt. The �rst theorem proves thecorrectness of the algorithm and the second proves a bound on the number of trainingexamples required by the algorithm.Theorem 3.6 LetWeakLearn be a learning algorithm that, for any distribution overthe sample space X and any c 2 C, generates a hypothesis whose error is smaller than1=2 � with probability � for some ; � > 0. Then, for any �; � > 0, the algorithmBFilt, given �; ; � and �, generates a hypothesis whose error is smaller than � withprobability at least 1� �.The proof of this theorem is based on the potential function, �ir, de�ned in Section 2.In order to analyze the behavior of the average potential on aborted iterations we usethe following re�nement of Lemma 2.2. Recall that in the Majority vote game thechooser is required to choose sets whose weight is larger than some constant largerthan 1=2, here we denote this constant by 1=2 + 0. The weightor assigns weights tosets according to 0. Suppose that the actual weight of the set that the chooser chooseson iteration i is ̂i. Lemma 2.2 guarantees that if the chooser makes a legal choice,i.e., if ̂i � 0, then the average potential does not increase. The following lemma givesa more re�ned statement, which expresses the change in the average potential as afunction of the di�erence 0 � ̂i.Lemma 3.7 Suppose that the weightor in the majority vote game assigns weights ac-cording to 0, and that ̂i =Pir=0W (M ir). Then the increase in the average potential,where �ir is de�ned according to 0, isi+1Xr=0 qi+1r �i+1r = iXr=0 qir�ir + (0 � ̂i) iXr=0 qir�ir :Proof: Recall Equation (9) from the proof of Lemma 2.2:i+1Xr=0 qi+1r �i+1r = iXr=0 qir h(1� xir)�i+1r + xir�i+1r+1i = iXr=0 qir�i+1r + iXr=0 qirxir(�i+1r+1 � �i+1r) :From the de�nition of ̂i, we get, following the same line of argument as in Equa-tions (10) to (13) thatiXr=0 qirxir(�i+1r+1 � �i+1r) = (1=2+ ̂i) iXr=0 qir(�i+1r+1 � �i+1r) : (16)26

Combining Equations (9) and (16) we get:i+1Xr=0 qi+1r �i+1r = iXr=0 qir�i+1r + (1=2 + ̂i) iXr=0 qir(�i+1r+1 � �i+1r)= iXr=0 qir�i+1r + (1=2 +) iXr=0 qir(�i+1r+1 � �i+1r) + (� ̂i) iXr=0 qir(�i+1r � �i+1r+1)= iXr=0 qir h(1=2 +)�i+1r+1+ (1=2�)�i+1r i + (� ̂i) iXr=0 qir(�i+1r � �i+1r+1) :Using Equation (5) for the �rst term and Equation (7) for the second term we �ndthat i+1Xr=0 qi+1r �i+1r = iXr=0 qir�ir + (� ̂i) iXr=0 qir�ir ;which is the statement of the lemma.Proof of Theorem 3.6 From Lemma 3.4 we know that the probability that anyof the times the abort condition has been triggered is unjusti�ed is smaller than �=2.On the other hand, the properties of Algorithm BRel, given in Lemma 3.5, guaranteethat for each iteration, 0 � i � k� 1, the probability that the error of hi is larger than1=2� =2 is smaller than �=2k. Combining these claims we get that with probabilityat least 1 � � all the hypotheses have error smaller than 1=2� =2 and all the timesthe abort condition is triggered are justi�ed. We shall now show that in this case theerror of hM is smaller than �.In applying Lemma 3.7 to our analysis, we choose 0 to be =2. It is easy to checkthat the probability of any set of examples A according to the �ltered distribution gen-erated by FiltEX is equal to the weight assigned to A by the weighting scheme de�nedin Equation 3 where 0 replaces . We equate the set chosen by the chooser with theset of instances on which hi(x) = c(x). Under this correspondence, the probability thathi(x) is correct, when measured with respect to the �ltered distribution, correspondsto the weight of the set chosen by the chooser.Consider �rst the iterations 1 � i � k in which the abort condition is not triggered,i.e. the hypothesis hi is successfully generated and has error smaller than 1=2� 0. Inthis case we have that ̂i > 0 and thus Lemma 3.7 implies that the average potentialcan only decrease.Next consider the aborted iterations. The error of a random coin ip with respectto any distribution over the examples, is, by de�nition, one half. Thus ̂i = 1=2 andwe get from Lemma 3.7 that in the aborted iterations the average potential increasesby at most 0Pir=0 qir�ir = ti=2. As we assume all the aborts are justi�ed, we knowthat ti < 2�(1��)k .Combining the aborted and non-aborted iterations, we �nd that the total potentialincrease in all k iterations is at most �(1� �). We now follow the same argument as inthe proof of Theorem 2.1. As the number of iterations, k, is chosen so that �00 � �2,we get thatPr (hM (x) 6= c(x)) = kXr=0 qkr�kr � �00 + �(1� �) � �2 + �(1� �) = � ;27

where the probability is taken with respect to both the random choice of x accordingto D, and the random coin ips of the dummy weak hypotheses.Theorem 3.8 The number of training examples required by BFilt is smaller thanm = 4p2e1=12p3� k3=2�(1� �) max mR; 4 ln 16k2�� ! < 33�2 �ln 1��3=2max�mR; 12 ln 8 ln 1=��� � ;(17)where k is the number of iterations as chosen in line 1 of BFilt and the inequality isobtained by using the suggested choice of k. The variable mR denotes the number ofexamples for generating a weak hypothesis with reliability 1��=2k by BRel and is equalto: mR = m0� ln 4k� + 82 �ln ln 4k� + ln 2k��� :As discussed above the factor �imax is chosen so that the probability of acceptinga random example is maximized without distorting the simulated distribution. Asthe value of �imax plays a critical role in the proof of the Theorem 3.8. we start bypresenting a tight upper bound on this value.Lemma 3.9 For all iterations 0 � i � k � 2 of BFilt,�imax � s 83�(k � i� 1)e1=12The proof is given in Appendix D.Proof of Theorem 3.8 The number of examples that are required by BRel togenerate a hypothesis that has error smaller than 1=2 � =2 with probability largerthan 1� �=2k, denoted mR, is easily bounded using Lemma 3.5. The abort conditionguarantees that the number of examples that are tested by FiltEX during iteration iis at most k�imax�(1� �) max mR; 4 ln 16k2�� ! :Thus the total number of examples is bounded bymax mR; 4 ln 16k2�� ! k�(1� �) k�1Xi=0 �imax : (18)Using Lemma 3.9 for 0 � i � k � 2 and observing that �k�1max = 1 we can bound thesum by k�1Xi=0 �imax � s8e1=63� 0@k�1Xj=1 1pj + 11A < s8e1=63� 2pk : (19)Where the last inequality is true becausek�1Xj=1 1pj < 1 + Z k�11 1pxdx = 2pk � 1� 1 :28

Combining 18 and 19 we get the equality in 17 and plugging in the choice k = 42 ln 1�we get the inequality.We conclude this section by briey discussing the time and space complexity ofBFilt. Assuming a uniform bound on the running time ofWeakLearn, it is clear thatthe time complexity of BFilt is dominated by the time spent in line 3. of FiltEX tocalculate the labels assigned to the prospective example by the currently available weakhypotheses. As this time is proportional to the number of weak hypotheses available,we get that the time complexity of BFilt is at most k times the sample complexityof BFilt. Similarly, assuming a uniform space complexity on WeakLearn and on thesize of the hypotheses that it generates, it is clear that the space complexity of BFiltis proportional to k, the number of hypotheses that need to be stored in memory.3.4 Randomized learning algorithms and randomized hy-pothesesIn our discussion so far, we have concentrated on boosting deterministic weak learningalgorithms that generate deterministic hypotheses. In this section we show that ourresults transfer, with little or no change, to the more general case in which both theweak learning algorithm and its hypotheses are allowed to be randomized, i.e., makeuse of ipping random coins.Note that the data to the learning algorithm and the hypothesis already has alarge degree of randomness, as it consists of examples that are chosen at random. Wenow show a simple transformation that translates randomized learning algorithms intodeterministic learning algorithms on a di�erent sample space.For our analysis we use the convention that the random bits that are used by arandomized algorithm are given to the algorithm as input when it is called. Morespeci�cally, we assume the algorithm is given a real valued random number, r, chosenuniformly at random from [0; 1] whose binary expansion is used as an in�nite source ofrandom bits.12 We shall take special care that each bit in the binary expansion is usedat most once during the run of the algorithm. Thus any random bit used at any pointin the algorithm is independent of any other bit. For that reason the distribution ofthe outcome of the algorithm is equivalent to the distribution generated if each randombit is chosen by an independent coin ip. The transformation we present is only ananalytical tool. As we shall see, the results of the analysis is that BFilt can be appliedto the randomized case without any change. The only change that is required for usingBSamp in the randomized case is that the sample size has to be slightly increased.Assume A is a randomized weak learning algorithm that generates randomizedhypotheses. Assume A can learn the concept class C for any distribution D on thesample space X . We now de�ne a mapping � that maps X;C; A and D to X 0;C0; A0and D0, where A0 is a deterministic learning algorithm that generates deterministichypotheses. The sample space X 0 consists of pairs of the form hx; ri, where x 2 X andr 2 [0; 1). The probability measure D0 is the measure generated by the cross productbetween the distribution D and the uniform distribution on [0; 1). Each concept c 2 Cis mapped to a concept c0 2 C0 such that for all hx; ri, c0(hx; ri) = c(x). Finally, thealgorithm A0, receiving the training examples f(hx1; r1i; l1); : : : ; (hxm; rmi; lm)g, runs12We assume some convention is used for selecting one of the binary expansions when the expansion is notunique. 29

the algorithm A on the sample f(x1; l1); : : : ; (xm; lm)g, together with the number r1,that is used by A as its source of random bits. The hypothesis h, generated by A, istransformed in a similar way: h0, upon receiving an instance hx; ri as input, calls h tolabel x, giving it r as its source of random bits.Note that an in�nite sequence of bits can be partitioned into an in�nite number ofin�nite subsequences. For concreteness, we de�ne the nth subsequence of r to consistof the bits whose indices can be written as (2i� 1)2n�1 for some positive integer i. Wedenote this subsequence by rn. Note that if r is chosen uniformly at random then allof its subsequences are also uniformly distributed.Using these de�nitions we can now show how boosting the randomized learningalgorithm A can be viewed as boosting the deterministic algorithm A0 over the largersample space. Transforming the algorithm for boosting by �ltering, BFilt, is simpler.The change takes place in the procedure FiltEX. In each iteration the procedurereceives an example hx; ri 2 X 0 chosen at random according to D0. It then separatesx and r, and maps r into r1; : : : ; ri+1, which are independent random bit sequences.Sequences 1 to i are used for calculating h1(x; r1); : : : ; hi(x; ri). Sequence number i+1is returned toWeakLearn, in this case the algorithm A, for use as its source of randombits. Using this transformation the proofs of Theorems 3.6 and 3.8 can be used withoutchange, and thus BFilt works equally well for randomized and deterministic learningalgorithms.The analysis of the algorithm for boosting by sampling, BSamp, is somewhat morecomplicated. That is because the same examples are repeatedly fed into A. Since theexamples include the source of random bits, this might induce undesired dependenciesbetween random bits used in di�erent runs of A. To avoid this problem, we assume thatan additional integer parameter, which we denote q, is supplied to A. This parameterdirects algorithm A to use, as it source of random bits, the qth subsequence of therandom sequence with which it is supplied. The parameter q is di�erent each time A iscalled, and thus the random bits used by A are guaranteed to be independent. However,this addition changes somewhat the proof of Theorem 3.2, forcing us to increase thesize of the sample that is used by BSamp, as is summarized in the following theorem.Theorem 3.10 Let WeakLearn be a randomized learning algorithm that generates,with probability � > 0 over its internal randomization and the random choice of thetraining examples, a randomized hypothesis whose error is smaller than 1=2 � , forsome > 0. Assume the number of training examples required to achieve this isuniformly bounded by m0. Suppose that m, the size of the sample used by BSamp,obeys the following inequality:m � max�208; 2� ln 2� ; 16a(lna)2� ; where a = m0 + ln 1� + ln ln 12�2 : (20)Then with probability at least 1� �, the hypothesis hM generated by BSamp has errorsmaller than �.Notice that this bound is similar to the one given in Corollary 3.3, but there is a depen-dence of the sample size on � which does not exist when the algorithm is deterministic.Proof: The essential di�erence from the proof of Theorem 3.2 is that the number ofpossible hypotheses that can be generated from the sample is larger. In Theorem 3.2this number is equal to the number of subsequences of size d that can be chosen from30

a sequence of size m, i.e. md. In our case it is the number of subsequences times thenumber of combinations of values of the parameter q that could have been used in thegeneration of the k good hypotheses. Assume that q = ir + l where i = 0 : : :k � 1 isthe number of hypotheses that have been generated so far, l = 1 : : :r is the counter ofthe attempts to generate a good ith hypothesis and r = (1=�) ln(2k=�) (These indicesare used in statement 3 and 3.a in Figure 3). Using this convention it is clear that eachone of the hypotheses can be chosen using one of r values, and the total number ofcombinations of values of q is rk. Thus the basic inequality that replaces inequality 15is rkmd(1� �)m�d < �=2 : (21)And solving for m that satis�es this inequality we get the following inequalitym � 1� ln 2� + m02 � lnm+ 1 �2 + lnm22 �ln 1� + ln ln 12� + ln ln lnm�! :Using the same argument that was used to prove Corollary 3.3 we get the statementof the theorem.3.5 The resources needed for polynomial PAC learningSo far in this paper we have considered learning algorithms that are designed to workfor a single �xed concept class de�ned over a single �xed sample space. However, mostlearning algorithms can be used for a family of concept classes, and one is then inter-ested in the way the performance of the learning algorithm depends on the complexityof the concept class. Valiant [Val84] presented a framework, called the PAC13 learningframework, in which such quanti�cation can be done. This framework is one of themost studied frameworks in computational learning theory. In this section we showthe implications of our results in this framework.We start by presenting some notation following Haussler et. al. [HKLW91]. Assumethat the sample space is a union of sample spaces of increasing complexity: X =[1n=1Xn. Similarly assume that the concept class that maps points in Xn to f0; 1g isde�ned as a union of concept classes of increasing complexity: Cn = [1s=1Cn;s. Theindices n and s usually denote the length of the description of an instance and a conceptin some encoding scheme for X and for C respectively.We say that a concept class C is learnable, or strongly learnable, if there exists alearning algorithm A, and polynomials p1(�; �; �; �), p2(�; �; �; �) such that:� For any n; s and any �; � > 0, the algorithm A, given n; s; �; � and access toan example oracle EX, can learn any concept c 2 Cn;s with respect to anydistribution D on Xn, and generate a hypothesis that has error smaller than �with probability larger than 1� �.� The sample complexity of A, i.e. the number of calls that A makes to EX, issmaller than p1(n; s; 1=�; 1=�).� The running time of A is polynomial in p2(n; s; 1=�; 1=�).Kearns and Valiant [KV88, KV94] introduced a weaker form of learnability in whichthe error cannot necessarily be made arbitrarily small. A concept class C is weakly13PAC learning stands for Probably Approximately Correct learning.31

learnable if there exists a learning algorithm A, and polynomials p1(�; �; �), p2(�; �; �) andp3(�; �) such that:� For any n; s and any � > 0, the algorithm A, given n; s; � and access to an exampleoracle EX, can learn any concept c 2 Cn;s with respect to any distribution D onXn, and generate a hypothesis that has error smaller than 1=2 � 1=p3(n; s) withprobability larger than 1� �.� The sample complexity of A, i.e. the number of calls that A makes to EX, issmaller than p1(n; s; 1=�).� The running time of A is polynomial in p2(n; s; 1=�).In other words, a weak learning algorithm produces a prediction rule that performsjust slightly better than random guessing.Schapire [Sch90] has shown that the notions of weak and strong PAC learning areequivalent. Moreover, the boosting algorithm he invented provides an e�ective way fortranslating any weak learning algorithm into a strong learning algorithm. The boostingalgorithm BFilt presented in this paper provides a more e�cient translation of weaklearning algorithms to strong learning algorithms. A simple application of Theorem 3.8gives the following upper bound on the resources required for PAC learning.Theorem 3.11 If C is a weakly PAC learnable concept class, parameterized by n ands in the standard way [HKLW91], then there exists a PAC learning algorithm for Cthat learns with accuracy � and reliability � and:� requires a sample of size(1=�)(log 1=�)3=2(log log 1=�+ log 1=�)p1(n; s),� halts in time(1=�)(log 1=�)5=2(log log 1=�+ log 1=�)p2(n; s),� uses space (log 1=�)(log log 1=�+ log 1=�)p3(n; s), and� outputs hypotheses of size (log 1=�)p4(n; s) evaluatable in time (log 1=�)p5(n; s)for some polynomials p1; p2; p3; p4 and p5.Proof: The PAC learning algorithm that we refer to is algorithm BFilt applied tothe given weak PAC learning algorithm. As n and s are passed without change to theweak learning algorithm, the dependence on n and s remains polynomial. Fixing �and , Theorem 3.8 gives the dependence of the sample complexity on � and �. Thetime and space complexity of the boosted algorithm, as well as the size of the �nalhypothesis follow from the discussion of the resources required by BFilt which followsTheorem 3.8.We now compare this theorem to Theorem 4 in [Sch90]. The statement there is thatthe dependence of the sample and time complexity on � is O(1=� poly(1=�)), and thatthe other dependencies on 1=� are poly-logarithmic. Our theorem tightens these boundsby giving the explicit powers in the polynomials over log(1=�) and log(1=�). Moreover,our more detailed bound, given in Theorem 3.8, shows explicitly the dependence onthe parameters and m0, which are hidden in Schapire's analysis. In the next sectionwe show that some of these upper bounds are optimal.32

3.6 Relations to other boundsThe bounds given in Theorems 3.8 and 3.11 are currently the best known bounds onthe resources required for polynomial PAC learning of an arbitrary PAC learnable class.In this section we relate our results to known lower bounds, and indicate where furtherimprovement might be possible.Theorem 3.11 shows that for any learnable concept class there exists a learningalgorithm in RP for which the dependence of the sample size on the required accuracy,when all other parameters are �xed, is O(1=�(log 1=�)3=2). A general lower bound of
(1=�) is given in [BEHW89] for learning any \non-trivial" concept class. This lowerbound holds without regard to computational constraints on the learning algorithm.There exists a matching upper-bound, given in [HLW88][Theorem 5.1], which saysthat, ignoring computational complexity, any concept class that can be learned usinga sample of size polynomial in 1=� can also be learned using a sample of size O(1=�)(ignoring the dependence on other problem parameters). The truth might be eitherthat our upper bound can be reduced to match the lower bound, or that there existsa better lower bound on the sample complexity of learning algorithms that are inRP . However, an improved lower bound would have to either assume or imply thatRP 6= NP .The number of weak hypotheses that are combined by our boosting algorithms isO(1=2 ln(1=�)). We now show that this dependence of the number of required weakhypotheses on � and is the best possible for any general boosting algorithm. A generalboosting algorithm is a learning algorithm that can improve the accuracy of any PAClearning algorithm. As such, it cannot depend on any properties of the concept class.Knowledge about the concept class may only be used by the weak learning algorithm.A general boosting algorithm receives as input four positive real valued parameters:�; ; � and �0. Its goal is to generate a hypothesis h : X ! f0; 1g which is a closeapproximation of a target concept c : X ! f0; 1g from an unknown concept classC with respect to the target distribution D. The boosting algorithm operates in kiterations as follows. In iteration i the boosting algorithm de�nes a distributions Diover the instance space X . The examples oracle FiltEX selects random instances fromX according to the distribution Di and labels them according to c. The weak learningalgorithm, WeakLearn, which knows the concept class C, is given access to FiltEX,and generates a hypothesis hi : X ! f0; 1g such that PrDi(hi(x) 6= c(x)) < 1=2� withprobability at least 1� �0. The boosting algorithm receives these k weak hypotheses.In addition, it can receive m examples drawn according to the target distribution D.Using this information, the boosting algorithm is required to generate a hypothesis hsuch that PrD(h(x) 6= c(x)) < � with probability at least 1� �.We prove that the dependence of k on and � is k =
((1=2) log(1=�)). The ideaof the proof is simple. Suppose that the weak hypotheses were stochastic rules suchthat for each x 2 X , Pr(hi(x) = c(x)) = 1=2 + independently of anything else. Inthis case it is easy to show that the best way of combining the hypotheses is by amajority vote and that the number of weak hypotheses required is
((1=2) log(1=�)).The technical caveat in this argument is that one could use the same weak hypothesisseveral times and combine the outcomes to achieve the same small error. We thus needto demonstrate the existence of deterministic weak hypotheses whose errors behave ina way that is similar to independent random label noise.For the sake of simplicity, we assume that the instance space X is the �nite set of33

integers f1; : : : ; Ng. We assume that N is large and de�ne FN to be a family of 2Nconcept classes as follows. Let r 2 f0; 1gN be the index of the concept class and denoteby r(x) the value of bit number x in r. We de�ne the concept class Cr to include thefollowing two concepts: cr0(x) = r(x) and cr1(x) = 1 � r(x). We further assume thatthe distribution D is the uniform distribution over f1; : : : ; Ng.We show that if k, the number of weak hypotheses, is signi�cantly smaller thanthe number required by our boosting algorithm for given values of � and , then thereexists some concept class in the family described above and a concept in that class,such that the error of the �nal hypothesis generated by the boosting algorithm whenlearning this concept is larger than �. This is stated more formally in the followingtheoremTheorem 3.12 Let �; and � be positive real numbers and let k be an integer suchthat kXi=bk=2c+1 ki!(1=2�)i(1=2 +)k�i > � :Let B be a general boosting algorithm. Then there exists a concept class C, a conceptc 2 C and a weak learning algorithm WeakLearn for C such that the following holdswith probability at least 1� � over the random choice of the instances and the internalrandomization of WeakLearn.� WeakLearn returns hypotheses with whose errors are at most 1=2� with respectto the corresponding distributions.� If B callsWeakLearn at most k times then the error of the hypothesis generatedby B is at least �.Using standard approximations of the tails of binomial distributions, one can showthat the lower bound on k given in the lemma implies that k =
((1=2) log(1=�)).Moreover, the expression for the number of weak hypotheses required by the boostingalgorithms BFilt and BSamp has a similar binomial form (see statement 2 in Figure 3and statement 1 in Figure 4). This means that the upper and lower bounds on k areclosely related even when � and are large.Proof of the theoremWe show that for a su�ciently large N , one of the concept classes in FN satis�esthe statement of the theorem. We prove the existence of this concept class using aprobabilistic argument. Suppose that the concept class Cr 2 FN is chosen randomlyby selecting r uniformly at random from f0; 1gN . After this selection has been madec 2 Cr is chosen randomly with equal odds to be either cr0 or cr1. We shall show thatthe expected error of any boosting algorithm, with respect to this distribution over thetarget concepts, is larger than �.As each concept class includes only two concepts which disagree on each pointof the domain, the learning problem faced by the weak learner is trivial. The weaklearner can identify the concept after observing any single example. However, weconstruct the hypotheses so that the boosting algorithm can gain as little informationas possible without violating the requirement on their performance with respect tothe corresponding distributions. We assume that the weak learning algorithm is notlimited in its computational power. In particular, by making many calls to FiltEX,WeakLearn can approximate PrDi(x) to within any desired accuracy for all x 2 X .34

Given the distribution Di and the parameters and N the weak learner selects thehypothesis hi by choosing the set Ai, on which hi(x) = c(x), in the following way. First,the set A0i is de�ned to contain all the elements x 2 X for which PrDi(x) � N�2=3. Onthe rest of the space, for each element in X � A0i, we ip a random biased coin andadd it to A00i with probability 1=2+ +N�1=12. We use 0 to denote +N�1=12. Theset Ai is de�ned to be A0i [A00i and the hypothesis hi is c(x) if x 2 Ai and 1 � c(x)otherwise.We need to show that, when N is su�ciently large, this procedure generates ahypothesis whose error, with respect to Di, is smaller than 1=2� with high probability.Using the terminology of the majority-vote game, we call the probability with respectto Di the weight of the set. As hi(x) = c(x) for all x 2 A0i, it su�ces to show thatthe weight of A00i is at least 1=2 + of the weight of X � A0i. The expected weightof A00i is (1=2 + 0)PrDi(X � A0i). It thus remains to show that the actual weight ofA00i is, with high probability, close to the expected value. Observe that at most N2=3elements can have su�cient weight to be included in A0i. Thus there are betweenN �N2=3 and N elements in X �A0i and the weight of each element is at most N�2=3.Thus the variance of the weight of A00i is at most N1=2N�2=3 = N�1=6 = o(N�1=12). As 0� = N�1=12, it is easy to show, using standard bounds on the deviation of large sumsfrom their expected value, that the weight of A00i is larger than (1=2+)PrDi(X �A0i)with probability approaching 1 as N ! 1. This completes the proof that the weakhypotheses that are generated by the weak learner are legitimate weak hypotheses.We now lower bound the error of the prediction of c(x) that can be achieved bythe boosting algorithm. We show this lower bound by constructing the Bayes optimalprediction rule for the speci�c weak learner described above. The optimal rule is dividedinto three cases depending on the instance x. In the �rst case one of the k distributionsused during the boosting process assigns x a weight larger than N�2=3; in this case weknow that the corresponding hypothesis gives the correct label and we are done. Asobserved above, the total number of elements of this type is kN2=3, and thus their totalprobability (with respect to the uniform distribution which is the target distribution)is at most kN�1=3, which approaches zero as N ! 1. In the second case x is aninstance whose label has been observed in one of the examples accessed by B. Wedenote this set of instances by M . In this case the label of x is the one observed in theexample. The probability of this event is at most jM j=N which also approaches zeroas N ! 1. In the third case, which amounts to most of the probability, each of thek hypotheses has been chosen, independently at random, to be c(x) with probability1=2+ 0 and 1� c(x) with probability 1=2� 0. We can use Bayes formula to calculatethe probability that c(x) = 1 given the values of the weak hypotheses. Denoting byn(x) the number of hypotheses such that hi(x) = 1, and setting Z = X�M �Ski=1A00i ,we get Pr (c(x) = 1jx 2 Z and n(x) = n) =Pr (n(x) = njx 2 Z and c(x) = 1)Pr (c(x) = 1)Pl2f0;1gPr (n(x) = njx 2 Z and c(x) = l)Pr (c(x) = l) : (22)Here, the probabilities are measured with respect to the random choice of the examplex, the concept class Cr 2 FN , the concept c 2 Cr and the random choices made byWeakLearn. The method by which the concept class Cr and the concept c 2 Cr arechosen implies that Pr(c(x) = 1) = 1=2. The method by which the elements in A00i are35

chosen imply thatPr (c(x) = 1jx 2 Z and n(x) = n) =12(1=2 + 0)n(x)(1=2� 0)k�n(x)12(1=2 + 0)n(x)(1=2� 0)k�n(x) + 12(1=2� 0)n(x)(1=2 + 0)k�n(x) (23)It is easy to see that this equation gives a value larger than 1=2 if and only if n(x) >k=2. Thus the Bayes optimal decision rule when x 2 Z is to predict the value ofc(x) according to the majority of the weak hypotheses. 14 The probability that thisprediction rule is incorrect is lower bounded byPrD(Z) Pr (MAJ(h1(x); : : : ; hk(x)) 6= c(x))� (1� jM j=N � kN�1=3) kXi=bk=2c+1 ki!(1=2� 0)i(1=2 + 0)k�i� (1� jM j=N � kN�1=3) kXi=bk=2c+1 ki!(1=2� �N�1=12)i(1=2 + +N�1=12)k�iN!1�! kXi=bk=2c+1 ki!(1=2�)i(1=2 +)k�i : (24)As this is a lower bound on the probability of mistake of the Bayes rule, it is a lowerbound on the (expected) probability of mistake of the hypothesis generated by anyboosting algorithm. This, in turn, implies that for any boosting algorithm there existsa choice of concept class Cr and a concept c 2 Cr such that the probability of mistakeof the hypothesis generated by the boosting algorithm for this concept is at least aslarge as the lower bound given in Equation 24. This, together with the assumption onk stated in the statement of the Theorem, completes the proof.4 Extensions4.1 Using boosting for distribution-speci�c learningSo far, we have followed the distribution-free paradigm in computational learning andassumed that the learning algorithms that we attempt to boost have complexity boundsthat hold uniformly for all input distributions. In this section we show that BFilt, oursecond boosting algorithm, can boost learning algorithms whose accuracy is not uni-formly bounded for all distributions. We will de�ne a measure of discrepancy betweendistributions and show that the accuracy ofWeakLearn can be allowed to degrade asthe discrepancy increases between the �ltered distribution that is fed intoWeakLearnand the distribution that governs the example oracle EX. We shall refer to the distri-bution governing EX as the \target" distribution.From Lemma 3.7 we know that the increase in the average potential in the ithiteration is equal to i+1Xr=0 qi+1r �i+1r = iXr=0 qir�ir + (� ̂i) iXr=0 qir�ir ;14If n(x) = k=2 then the Bayes rule is unde�ned, for the sake of the lower bound on the error we assumethat the prediction made is always correct in this case.36

where ̂i is the di�erence between 1=2 and the error of hi with respect to the �ltereddistribution in the ith iteration. We recall the notation de�ned in Section 3.3: ti =Pir=0 qir�ir and re-write the last equationi+1Xr=0 qi+1r �i+1r = iXr=0 qir�ir + (� ̂i)ti :Recall that the probability of accepting a random example that is tested during the ithiteration is ti=�imax. Thus, if the probability of accepting a random example during theith iteration is small, then the sensitivity of the �nal accuracy to the accuracy of theith hypothesis is small. We have already used this fact in the proof of Theorem 3.6.There we used it to show that if the probability of accepting a random example issmall enough, then a random coin ip can be used instead of the weak hypothesis. Inthis section we use the same property to relax the requirements on the accuracy of thehypotheses generated by WeakLearn for distributions that are far from the targetdistribution.The following lemma shows how the requirements on the accuracy of the hypothesesgenerated byWeakLearn can be relaxed, allowing the generation of hypotheses whoseerror is larger than 1=2� .Lemma 4.1 Let 0 < ; � � 1=2 be the accuracy parameters supplied to BFilt, and kbe the number of iterations chosen by BFilt. Let ti denote Pir=0 qir�ir and let 1=2� ̂idenote the error of hi with respect to the �ltered distribution in the ith iteration.If, for each iteration 0 � i � k � 1 we havêi � �1� �(1� �)tik � ; (25)then the error of hM , the hypothesis output by BFilt, with respect to the target distri-bution, is smaller than �Proof: From Lemma 3.7 we immediately get that the increase of the average potentialin each iteration is at most �(1� �)=k. Thus the total increase in the average potentialin all k iterations is �(1� �). The rest of the proof follows the same line of argumentas the one used for the aborted iterations in the proof of Theorem 3.6.To illustrate the signi�cance of this result, assume that WeakLearn generates ahypothesis whose error is 1=2 � when given examples from the target distribution.Our goal is to achieve a higher degree of accuracy on the target distribution by makinguse of the performance of WeakLearn on other distributions. As we know fromthe main results of this paper, if WeakLearn is capable of generating a hypothesiswith error smaller than 1=2 � for any distribution then boosting can achieve anydesired accuracy on the target distribution. However, using Lemma 4.1 boosting canbe used even in cases where the accuracy of the hypotheses generated by WeakLearndecreases as the distributions supplied to it become more and more di�erent from thetarget distribution. The slower the decrease in accuracy, the higher the quality thatcan be achieved by boosting.We start by simplifying Equation (25). By choosing k = (4=2) ln(1=�), we get anupper bound on the error of hi as a function of and ti:̂i � �1� �(1� �)4ti ln(1=�)� :37

Di�erent choices for generate di�erent lower bounds on ̂i as a function of ti. Anillustration of these lower bounds is given in Figure 5.
0.1

0.2

0.3

0.4

0.5

100 200 300 400 500 600 700 800 900 1000

Error

1

Frequency of accepting

a random exampleFigure 5: The accuracy that can be achieved using boosting for a learner whoseaccuracy depends on the distribution. The horizontal line denotes 1=t, or the expectednumber of examples that have to be �ltered per accepted example. The origin denotes anacceptance rate of 1, i.e. every example is accepted, which means that the weak learner isobserving the original distribution. The vertical axis denotes the error of the hypotheses.Each sloped line denotes a requirement on the maximal error of the weak learner as afunction of the divergence from the target distribution. Each such bound guarantees adi�erent accuracy of the �nal hypothesis, which is described by the bold arrow on the erroraxis. In order to separate the requirements for WeakLearn from the particulars of ourboosting algorithm, we need to upper bound the value of ti using a measure of thediscrepancy between the target distribution and the �ltered distribution. We shallnow de�ne such a measure of discrepancy, show that this measure is closely related tothe Kullback-Leibler divergence, and give a stronger version of Theorem 3.6 based onthis measure.De�nition 1 Let P and Q be two distributions de�ned over the same space X and�-algebra �. The maximal-ratio divergence between Q and P, denoted DM (QjjP), isde�ned to be DM (QjjP) := ln supA2�; Q(A)>0 Q(A)P(A)! :38

We now lower bound the maximal ratio divergence using the well-known Kullback-Leibler divergence.Lemma 4.2 For any two distributions Q and P, de�ned on the same measure space,DM (QjjP) � DKL (QjjP) :Where DKL (QjjP) is the Kullback-Leibler divergence, which is de�ned asDKL (QjjP) := Ex2Q�ln Q(x)P(x)� :Proof: If EQ �ln Q(x)P(x)� � a then there exists a set A such thatQ(A) > 0 and ln Q(A)P(A) �a, which implies that DM (QjjP) � a.Note that there is no similar inequality relating the two measures of divergence inthe other way. That is because there might be a set A such that Q(A) is very small,so that the contribution of this set to DKL (QjjP) is negligible, but on the other handQ(A)=P(A) is extremely large.Using these measures of divergence, we can lower-bound ti by functions of thedivergence between the target distribution and the ith �ltered distribution:Lemma 4.3 If D is the target distribution, and Fi is the distribution generated byFiltEX during the ith iteration, thenti � e�DM (FijjD) � e�DKL(FijjD) :Proof: The second inequality follows from Lemma 4.2. To prove the �rst inequality,assume that DM (FijjD) � a. Then there exists a set A 2 � such that Fi(A)D(A) � ea.Using the de�nition of the measure generated by �ltering in Equation (3) we getea � Pir=0D(A \X ir)�ir = ZiPir=0D(A \X ir) � Pir=0D(A \X ir) = ZiPir=0D(A \X ir) = 1Zi :The inequality holds because �ir � 1 always.15 Here Zi = Pir=0D(X ir)�ir = ti, fromwhich we get 1=ti � ea, which proves the lemma.We now combine the results of Lemmas 4.1, 4.2 and 4.3 to arrive at the followingstronger version of Theorem 3.6Theorem 4.4 Fix a target distribution D and real valued parameters ; �; � > 0.If WeakLearn is a learning algorithm that for any distribution P over the samplespace X and any c 2 C, generates a hypothesis whose error, with respect to P, issmaller than 12 � �1� �(1� �)4 ln(1=�) eDKL(PjjD)� ;then, with probability at least 1��, the algorithm BFilt, given the parameters, generatesa hypothesis whose error, with respect to D, is smaller than �.15Notice that a tighter bound can be proved using the bound on �imax = max0�i�r �ir given in Lemma 3.9.However, here we avoid using this tighter bound because we want the bound to be independent of i.39

Proof: The algorithm uses k = (4=2) ln(1=�) as given in statement 1. of AlgorithmBFilt (Figure 4). From Lemma 4.1 we get that it is enough if the error in the ithiteration is smaller than 12 � �1� �(1� �)4ti ln(1=�)� :Combining Lemmas 4.3 and 4.2, we get that ti � e�DKL(DjjT), which proves the theo-rem.Notice that Theorem 4.4 assumes that the weak learner is completely reliable, i.e.that it has probability 1 of generating a hypothesis with the desired accuracy. Thealgorithm can be used for less reliable weak learning algorithms, but there is a subtlepoint that needs to be addressed in that case. The point is that the number of examplesrequired by BRel in order to increase the reliability is
(1=2). Thus if the error of thehypothesis has to be just very slightly smaller than 1=2, the number of examples thatare required to test if the hypothesis is good increases without bounds. To avoid thisproblem the required error has to be set to a smaller value, thus making the detection ofa good hypothesis easier. We omit the details of this variant of the boosting algorithm.4.2 Boosting multiple valued conceptsAs was noted by Schapire [Sch91], the generalization of the equivalence between strongand weak learning to concepts with more than two labels does not enjoy the sametightness as the two label case. In the two label case an ability to predict correctlywith probability slightly better than that of random guessing is equivalent to stronglearning. In the j-label case the probability that a random guess is correct is equalto 1=j, while the minimal requirement for weak learning to be equivalent to stronglearning is still to predict correctly with a probability slightly better than one-half. 16As any j-valued decision rule can be replaced by j�1 binary decision rules of the type:\is the label equal i", the binary boosting algorithm can be used j�1 times to generatethe desired hypothesis. However, it is possible to perform the boosting process in onepass, generating a simple j-valued hypothesis and eliminating the dependence of thecomplexity on j. The combination rule that is used is simply the j-valued plurality,i.e. the strong hypothesis labels the input with the label given by the largest numberof weak hypotheses. The algorithm and its analysis are almost identical to the binarycase; the only di�erence is that the de�nition of the �ltering factor is based on one moreparameter, denoted by t, that is the number of incorrect hypotheses whose output isnot equal to the incorrect label with the largest number of votes. For example, supposethe labels are the ten digits. Assume the correct label for some example is \0" andthe incorrect label that got the largest number of votes is \9" (irrespective of whetherthe number of votes \9" got is larger than the number of votes \0" got). Then t isthe number of votes that the digits \1" to \8" got. The change in Formula (1) is that16To realize this, consider a 3-label concept such that for any example there are only two possible labels(over the whole concept class). In this case, using a random coin ip to choose one of the two possible labelswill give a correct answer half of the time, but the concept class might still be unlearnable [Sch91].40

k is replaced by k � t:�ir;t = 8>><>>: 0 if r � i� k�t2�k�t�i�1b k�t2 c�r�(12 +)bk�t2 c�r(12 �)dk�t2 e�i�1+r if i� k�t2 < r � k�t20 if r > k�t2 (26)It is interesting to note that the resources required are completely independent of j,the number of possible labels. This is even true if j is di�erent for di�erent n and s,or if j is in�nite, even uncountable! However, the requirement of weak learning forconcepts with uncountable ranges is unreasonably hard. The hypothesis must generatethe exact correct output for more than half the inputs (in probability). In this case theresult described in the next section might be more relevant.4.3 Boosting real valued conceptsA modi�cation of the boosting algorithm can be used for boosting learning algorithmsfor concept classes whose range is a real number (for a review of algorithms for learningreal valued functions, see Chapter 5 in [Nat91]). This variant of the boosting algorithmtransforms learning algorithms that generate hypotheses whose expected error, withrespect to the input distribution, is small to algorithms that generate hypotheses whoseerror is small for most of the input domain.Assume C is a set of functions from R to R andWeakLearn is a learning algorithmforC . Let p be any density function overR, and let (x1; f(x1)); (x2; f(x2)); : : : ; (xn; f(xn))be a set of examples drawn independently at random according to p and labeled ac-cording to some f 2 C. Then A, upon observing this sample, generates a hypothesisfunction g such that with probability larger than 1� �Z +1�1 jf(x)� g(x)jdp(x)< d : (27)We shall sketch how the boosting algorithm can be used to generate a function h suchthat with high probabilityPp �jf(x)� h(x)j > d1=2� � < � :Where Pp is the probability according to the density p and ; � > 0 are polynomialfractions.Using the Markov inequality and setting � = d1=2� we get, from Equation (27),that Pp (jf(x)� g(x)j > �) < 12 � :We extend the notion of agreement between a concept and a hypothesis on an example xto concepts de�ned on the reals by saying that f and g \�-agree" on x if jf(x)�g(x)j<�. Using the extended de�nition of agreement we can say thatWeakLearn is a weak-learner for the concept class C . If we replace all the places in the boosting algorithmin which it refers to \agree" or \correct" by corresponding references to \�-agree"or \�-agrees with the true function", we get a boosting algorithm for real valuedfunctions. 41

Suppose, for simplicity, that we are using algorithm BSamp. Then the result ofrunning the boosting algorithm over the weak learning algorithm are k real valuedfunctions h1(x); : : : ; hk(x) such that for any point in the sample more than k=2 of thefunctions are within � of the correct value. It is interesting to observe that the resultsof Theorems 3.2 and 3.10 hold without change for the real valued case. Thus, bychoosing the size of the sample large enough, we are guaranteed that, with probabilityat least 1� �, more than half of the hypotheses are �-correct on all but � of the pointsof the whole domain.Observe that if more than half of the functions �-agree with f on a point x thenthe median of the functions �-agrees with f . From this we get that the median is thenatural generalization of the majority for this case. By taking the median of the kweak hypotheses we get:Pp (Median(h1; h2; : : : ; hk) �-agrees with f) > 1� � :4.4 Parallelizing PAC learningThe fact that the boosting by �ltering algorithm, BFilt, accepts only a small fraction ofthe examples with which it is presented has an interesting implication on the possibilityof achieving optimal speed-up when parallelizing learning algorithms.Observe that the time complexity of BFilt is dominated by the time that is spentby the procedure FiltEX on checking examples that are eventually rejected. Observealso the probability that any given example is accepted during the generation of theith hypothesis is constant. In other words, it is independent of whether or not anyother example is tested or accepted during the ith stage.Assume now that we use one of the standard parallel-computation paradigms, suchas the PRAM model, and that we have a computer with p processors at our disposal.Then we can parallelize the procedure FiltEX in the following way. Each of the pprocessors runs the procedure FiltEX independently, each making separate calls toEX, so that they test di�erent random examples.17 When one of the p processorsaccepts an example, all the other processors are halted and their results are ignored.18The accepted example is then returned to WeakLearn as usual. Recall that out ofthe O(1=�(ln 1=�)3=2) examples that are needed for learning, only O(ln 1=�) exampleshave to be accepted and returned to WeakLearn. If the number of processors isO(1=�pln 1=�) then the search for an acceptable example takes expected constant time,so that the expected running time of the boosting algorithm becomes O(ln 1=�). If pis smaller, then a p-fold speedup over the serial execution is achieved. We summarizethis observation in the following theorem.Theorem 4.5 If C is a polynomially PAC-learnable concept class then there exists aparallel learning algorithm for C that runs on a PRAM machine with O(1=�) processorswhose time complexity dependence on the accuracy is O(log 1=�).17We either assume that the running time of EX is negligible or that EX can generate many examples atthe same time.18We assume that halting all processors can be done in unit time.42

5 Summary and open problemsThe algorithms we have described in this paper give the best upper bounds currentlyknown on the resources required for polynomial PAC learning. While these bounds arein some respects close to optimal, further improvement might still be possible in thedependence of the sample and time complexity on the parameters � and .One undesired property of our boosting algorithm is that it requires prior knowl-edge of a distribution-independent bound on the accuracy of the hypotheses thatWeakLearn generates. While guessing a bound is a theoretically feasible solution,it is expensive in practical applications [Dru93]. Recently, Freund and Schapire [FS95]have developed a boosting algorithm which does not require such prior knowledge. Thenumber of weak hypotheses that need to be combined to reach a given level of accuracyis almost as small as the number achieved here.A deeper problem is that the assumption of distribution-independent bounds forlearning algorithms often seems to be unreasonable. The results in [FS95] and The-orem 4.4 are encouraging in this respect because they shows that boosting can beachieved even without uniform bounds. This might be a sign that a richer, and maybemore realistic theory of learning can be developed in which performance bounds aredistribution dependent.In this paper we have shown that the boosting algorithm can be generalized tomultiple-valued concept classes as well as real valued concept classes. However, theresults regarding real-valued concept classes are still rather weak, and one would hopethat stronger types of boosting can be achieved in that context. The use of boosting inthe context of p-concepts [KS90] is another long standing open problem. Some progresson the problem of boosting in the context of independent label noise has been achievedin a recent work by Aslam and Decatur [AD93] about boosting learning algorithms inthe statistical query model introduced by Kearns [Kea93].Last but not least, boosting has been successfully applied to some practical machinelearning problems [DSS93]. Further experimentation with boosting methods will hope-fully achieve even better results. Such experiments are also important for discoveringinteresting new problems for theoretical research.6 AcknowledgmentsI would like to thank Robert Schapire for his many contributions to this paper, whichinclude the use of boosting for compression, the implication of boosting on circuit com-plexity and the de�nition of a general boosting algorithm. Most of the work describedin this paper was done when I was a student in the university of California in SantaCruz. I would like to thank my teachers there: Manfred Warmuth, David Haussler andDavid Helmbold for their help in writing this paper. I would like to thank Eli Shamirfor the observation of the implication of boosting on learning in parallel. Finally, Iwould like to thank the anonymous referees for their many valuable comments.References[AD93] J. A. Aslam and S. E. Decatur. General bounds on statistical query learning43

and PAC learning with noise via hypothesis boosting. In Proc. 35th Annu.IEEE Sympos. Found. Comput. Sci., November 1993.[BEHW87] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam'srazor. Inform. Proc. Lett., 24:377{380, April 1987.[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnabilityand the Vapnik-Chervonenkis dimension. J. ACM, 36(4):929{965, 1989.[Dru93] H. Drucker. private correspondence, 1992{1993.[DSS93] Harris Drucker, Robert Schapire, and Patrice Simard. Improving perfor-mance in neural networks using a boosting algorithm. In Advances inNeural Informations Processing Systems 5, pages 42{49, San Mateo, CA,1993. Morgan Kaufmann.[FS95] Yoav Freund and Robert E. Schapire. A decision-theoretic generalizationof on-line learning and an application to boosting. In eurocolt95, 1995.[FW93] Sally Floyd and Manfred Warmuth. Sample compressions, learnability, andthe vapnik-chervonenkis dimension. Technical Report UCSC-CRL-93-13,Computer and Information Sciences, University of California, Santa Cruz,1993.[GHR92] Goldmann, Hastad, and Razborov. Majority gates vs. general weightedthreshold gates. Computational Complexity, 2, 1992.[GKP91] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concretemathematics, a foundation for computer science. Addison-Wesley, 1991.[HKLW91] D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth. Equivalenceof models for polynomial learnability. Inform. Comput., 95(2):129{161,December 1991.[HLW88] D. Haussler, N. Littlestone, and M. K. Warmuth. Predicting f0,1g func-tions on randomly drawn points. In Proceedings of the 29th Annual IEEESymposium on Foundations of Computer Science, pages 100{109. IEEEComputer Society Press, 1988.[Kea93] M. Kearns. E�cient noise-tolerant learning from statistical queries. InProc. 25th Annu. ACM Sympos. Theory Comput., pages 392{401. ACMPress, New York, NY, 1993.[KS90] M. J. Kearns and R. E. Schapire. E�cient distribution-free learning ofprobabilistic concepts. In Proc. of the 31st Symposium on the Foundationsof Comp. Sci., pages 382{391. IEEE Computer Society Press, Los Alamitos,CA, 1990.[KV88] M. Kearns and L.G. Valiant. Learning boolean formulae or �nite automatais as hard as factoring. Technical Report TR-14-88, Harvard UniversityAiken Computation Laboratory, Cambridge, MA, 1988.[KV94] Kearns and Valiant. Cryptographic limitations on learning boolean formu-lae and �nite automata. Journal of the ACM, 41(1):67{95, 1994.[LW86] Nick Littlestone and Manfred Warmuth. Relating data compression andlearnability. This early and hard-to-locate work is referenced and partlyre-written in FW93, 1986. 44

[Nat91] B. K. Natarajan. Machine Learning: A Theoretical Approach. MorganKaufmann, San Mateo, CA, 1991.[Sch90] R. E. Schapire. The strength of weak learnability. Machine Learning,5(2):197{227, 1990.[Sch91] Robert E. Schapire. The Design and Analysis of E�cient Learning Algo-rithms. PhD thesis, M.I.T., 1991.[Sch92] Robert E. Schapire. private correspondence, January 1992.[Sha92] E. Shamir. private correspondence, 1992.[Val84] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134{1142, November 1984.A Summary of notationA.1 Concept Learning NotationThe sample space is denoted X , the concept class is denoted C , and the class ofhypotheses is denoted H . Typical elements of these spaces are denoted x, c and hrespectively. The distribution over X , according to which examples are generated,is denoted by D. We denote by S = f(x1; c(x1)); : : : ; (xm; c(xm))g a sample of mexamples, labeled according to c 2 C. The accuracy parameter is denoted �, andthe reliability parameter is denoted �. The sample, time, and space required for thelearning algorithm under discussion to achieve accuracy � with reliability � are denotedm(�; �),s(�; �) and t(�; �) respectively.A.2 Notation for describing boostingWe denote a generic weak learning algorithm by WeakLearn. We use �0 and �0 todenote the accuracy and the reliability ofWeakLearn. Usually �0 is close to 1=2 (theaccuracy of a random guess) and �0 is close to 1 (probability zero of generating an�0-accurate hypothesis). For this reason we de�ne = 1=2� �0 and � = 1� �0. Thenumber of examples, time and space required by the weak learner to achieve its �xedgoals are denoted m0; t0, and s0 respectively. We denote the hypothesis generated bythe boosting algorithm by hM , and the set of all such hypotheses by HM .
45

A.3 Meaning of common notation in di�erent sectionssymbol Meaning in Meaning in analysis of Meaning in analysis ofMajority-Vote Game BSamp BFiltk The total number of The total number of weak hypothesesiterations in the game. combined by the boosting algorithm.i = 0 : : :k The number of The number of weak hypothesesiterations played so far. generated so far.r = 0 : : : i The number of marks. The number of weak hypotheses that are correctThe points that The points in the The points in XX ir have been marked sample on which r on which r out ofr times in the out of the �rst i weak the �rst i weak�rst i iterations hypotheses are correct hypotheses are correctThe value of The number of The probability of AV (A) the set A sample points in A according to thedistribution DThe weight of The sum of the weights The probability of AWi(A) the set A assigned to the sample according to thein the ith points in A using hypotheses distribution �ltered usingiteration h1; : : : ; hi�1 hypotheses h1; : : : ; hi�1�ri =�imax is the probability of�ir The weight assigned to points in X ir accepting an example fromde�ned in Equation 1 X ir during the ith iteration.where �imax = max0�r�i �ir�ir The potential of the points in X ir, de�ned in Equation 6qir = V (X ir) The value of X ir The number of The probability of X irsample points in X ir according to thedistribution DThe fraction, in The fraction of the The fraction (in terms of thexir = terms of value) of X ir points of X ir on distribution D) of X irV (Xir\Xi+1r+1)V (Xir) that is marked which hi+1 on which hi+1 is correctin the ith iteration is correctL The set of points The sample points on The set of points in X onThe loss set marked less than k=2 which the majority vote which the majority vote istimes in the k is incorrect incorrect, i.e. the set of pointsiterations i.e. the empty set on which hM is incorrect.A.4 Special Notation� ti =Pir=0 qir�irThe expected weight of a random example in the ith iteration. This notation isused in the analysis of BFilt because ti=�imax is the probability of accepting arandom example during the ith iteration.� ̂i - the actual edge of the ith weak hypothesis, hi. In other words, the error ofhi, with respect to the ith �ltered distribution, is 1=2� ̂i.46

� mR - Denotes the number of examples required by BRel for generating a weakhypothesis with the desired reliability.B Boosting the reliability of a learning algo-rithmWe present the boosting algorithm, BRel, in Figure 6, and prove its performance.Proof of Lemma 3.5 The bound on the number of examples is immediate fromthe de�nition of the algorithm. To prove that the algorithm is correct, we bound theprobability that the resulting hypothesis has error larger than 1=2 � =2. There aretwo events that might cause this. The �rst is that all of the r hypotheses generated byWeakLearn have error larger than 1=2� . The second is that a hypothesis that haserror larger than 1=2� =2 makes less mistakes, on the test sample, than a hypothesisthat has error smaller than 1=2�. It is easy to bound the probability of each of thoseevents by �=2. Which proves the lemma.As we know that each call toWeakLearn has probability of at least � of generatinga hypothesis with error smaller than 1=2 � at each trial, the probability of notgenerating any accurate enough hypothesis is at most(1� �)r = (1� �)1=� ln(2=�) � e� ln(2=�) = �=2 :In order for the second event to happen, given that one of the hypotheses has errorsmaller than 1=2� , there has to be a bad hypothesis whose estimated error is largerthan that of the good hypothesis. For this to happen, the gap between the actual errorand the estimated error for at least one of the r hypotheses has to be at least =4.Using Hoe�ding bounds we get that this probability is at mostre�2m(=4)2 = r exp(�2(8=2) ln(2r=�)(=4)2) = re� ln(2r=�) = �=2 ;which proves the lemma.Algorithm BRelInput: EX,WeakLearn, ; �; �Output: A hypothesis hM , that has error smaller than 1=2� =2 with probability at least 1� �.1. CallWeakLearn r = ln(2=�)� times, each time on a different set of random examples.Store the resulting hypotheses as h1; : : : ; hr.2. Count the number of mistakes made by each of the r hypotheses on a randomsample of size m = (8=2) ln(2r=�).3. Return the hypothesis that makes the smallest number of mistakes on thesample.Figure 6: A description of the algorithm for boosting the reliability of an algorithm.47

C Proof of Lemma 2.5First observe that as we are interested only in the ratio of the weight and value of Gto that of D, we can assume without loss of generality that V (D) = W (D) = 1.De�ne the following series of partitions of D.� P0 = fDg.� P1 = fD10; D11g where the sets are disjoint and V (D10) = V (D11) = 12 .� Construct Pi+1 from Pi by splitting each set in Pi into two disjoint equal valuedparts so that the value of each part is exactly 2�i.We shall now use the partitions P0;P1;P2; : : : to construct a series of setsG0; G1; G2; : : :that will provide better and better approximations of the target set G. Assume thatthe binary expansion of 1=2 + is12 + = 1Xj=0 bj2�j(note that b0 = 0; b1 = 1) and construct the sets Gi according to the following inductiveprocedure: G0 = ;�i = the set with the largest weight in Pi that is not a subset of GiGi+1 = (if bi = 0 Giif bi = 1 Gi [�iIt is clear that Gi is a monotonically increasing series of sets and that limi!1 V (Gi) =1=2 + .Note that all of the parts in P have equal value. Thus the ratio between the value ofcomplement of Gi and the value of �i is equal to the number of parts that are outsideGi. On the other hand, the weight of the set �i is the largest among the parts outsideGi. Thus the ratio of the weight of the complement of Gi to the weight of �i is at leastthe number of parts. This fact can be written as follows.W (�i)1�W (Gi) � V (�i)1� V (Gi)We shall now prove by induction on i that 8i � 0 W (Gi) � V (Gi).� For i = 0, G0 = ; so the claim holds trivially.� For i � 1, if bi = 0 then Gi+1 = Gi so the induction holds trivially. Else, bi = 1and thus Gi+1 = Gi [�i and we get:W (Gi+1) = W (Gi) +W (�i) = V (Gi) + (W (Gi)� V (Gi)) +W (�i) �V (Gi) + (W (Gi)� V (Gi)) + V (�i)1� V (Gi)� (W (Gi)� V (Gi))1� V (Gi) =V (Gi) + V (�i) + (W (Gi)� V (Gi))[1� V (�i)1� V (Gi)]The �rst two terms sum to V (Gi+1), and the last term is positive because �i � Giimplies that V (�i) � 1 � V (Gi) and because from the induction hypothesisW (Gi)� V (Gi) � 0. The induction hypothesis is thus proven.48

De�ne G = S1j=1Gi. As all �i are in the �-algebra � then so is G. Also V (G) =limi!1 V (Gi) = 1=2+ . similarly W (G) = limi!1W (Gi) � 1=2+ and because forall i we have W (Gi) � V (Gi), we also get an inequality at the limit W (G) � V (G) =1=2 + , which proves the lemma.D Proof of Lemma 3.10In order to prove the lemma, we use the following technical lemma:Lemma D.1 For any real numbers x � 1 and 0 � � < 1=2exp�� 13(1� 4�2)x� < � xx(1=2��)�q 2�xexH(1=2��) < exp � 112x�p1� 4�2 : (28)Where H(y) = �y ln y � (1 � y) ln(1 � y) is the entropy function, and the extensionof the binomial function to the reals is based on the extension of the factorial to theGamma function x! = �(x+ 1).Proof: The proof of this lemma is based on the Stirling approximation. Noticethat as x ! 1, the lower bound converges to 1 while the upper bound converges to(1 � 4�2)�1=2. In other words, for large values of x the binomial � xx(1=2��)� is relatedto the exponential function in the denominator by a small factor.Stirling approximation to the factorial can be written in the following way:198 x � 1 x ln x� x+ ln x2 + lnp2� < ln(x!) < x ln x� x+ ln x2 + lnp2� + 112x :From this we get the lower bound as followsln xx(1=2� �)! = ln x!� ln((1=2� �)x)!� ln((1=2+ �)x)!> x ln x� x+ ln x2 + lnp2��x(1=2� �) ln(x(1=2� �)) + x(1=2� �) � ln(x(1=2� �))2 � lnp2� � 112(1=2� �)x�x(1=2 + �) ln(x(1=2+ �)) + x(1=2 + �) � ln(x(1=2+ �))2 � lnp2� � 112(1=2 + �)x= xH(1=2� �)� lnpx� lnr14 � �2 � lnp2� � 112(1=4� �2)x� xH(1=2� �)� lnp2�x+ ln 2� 13(1� 4�2)x :And the upper bound as followsln xx(1=2� �)! = ln x!� ln((1=2� �)x)!� ln((1=2+ �)x)!19See, for example, Equation (9.91) in [GKP91]. 49

< x ln x � x+ ln x2 + lnp2� + 112x�x(1=2� �) ln(x(1=2� �)) + x(1=2� �) � ln(x(1=2� �))2 � lnp2��x(1=2 + �) ln(x(1=2+ �)) + x(1=2 + �) � ln(x(1=2 + �))2 � lnp2�= xH(1=2� �)� lnpx� lnr14 � �2 � lnp2� + 112x= xH(1=2� �)� lnp2�x+ ln 2� lnq1� 4�2 + 112x :Proof of Lemma 3.9 : We can rewrite the de�nition of �ir from Figure 4 asfollows (ignoring the choices of r that give �ir = 0 for the purpose of the upper bound):�ri = x(12 � �)x!(12 � 2)x(12��)(12 + 2)x(12+�) ;where x = k � i � 1 and � = 1=2 � (bk=2c � r)=(k � i � 1). Using the upper boundgiven in Lemma D.1 bound the last expression for any value of � x(12 � �)x!(12 � 2)x(12��)(12 + 2)x(12+�)< r 2�x e1=12xp1� 2 exp�xH(12 � �) + x(12 � �) ln(12 � 2) + x(12 + �) ln(12 + 2)� :But a basic inequality is that for any �1=2 � � � 1=2H(12 � �) � �(12 � �) ln(12 � 2)� (12 + �) ln(12 + 2) :This inequality is strict unless � = =2. From this we get that x(12 � �)x!(12 � 2)x(12��)(12 + 2)x(12+�) < r 2�x e1=12xp1� 2 :As � 1=2, and x � 1, we get the statement of the lemma.
50

