Boosting a weak learning algorithm by
majority

To be published in Information and Computation

Yoav Freund
AT&T Bell Laboratories

New Jersey

July 21, 1995

Abstract

We present an algorithm for improving the accuracy of algorithms for learning
binary concepts. The improvement is achieved by combining a large number of hy-
potheses, each of which is generated by training the given learning algorithm on a
different set of examples. Our algorithm is based on ideas presented by Schapire in
his paper “The strength of weak learnability”, and represents an improvement over his
results. The analysis of our algorithm provides general upper bounds on the resources
required for learning in Valiant’s polynomial PAC learning framework, which are the
best general upper bounds known today. We show that the number of hypotheses
that are combined by our algorithm is the smallest number possible. Other outcomes
of our analysis are results regarding the representational power of threshold circuits,
the relation between learnability and compression, and a method for parallelizing PAC
learning algorithms. We provide extensions of our algorithms to cases in which the
concepts are not binary and to the case where the accuracy of the learning algorithm
depends on the distribution of the instances.

1 Introduction

The field of computational learning is concerned with mathematical analysis of algo-
rithms that learn from their experience. One of the main problems studied in com-
putational learning theory is that of concept learning. Informally, a concept is a rule
that divides the world into positive and negative examples. For instance, the concept
of “being blue” divides all objects into those that are blue and those that are not blue.
The learning algorithm is presented with examples of blue and non-blue objects and
is required to deduce the general rule. More formally, we define the set of all possible
objects as the instance space and define concepts as functions from the instance space
to the labels “—” and “+4”. An instance, together with its label is called an example.
The goal of concept learning is to generate a (description of) another function, called
the hypothesis, which is close to the concept, using a set of examples. In general, we

require that the learning algorithm observe just a small fraction of the instance space
and that the learner can generalize the information provided by these examples to in-
stances that have not been previously observed. It is clear that in order to do that the
learner must have some prior knowledge about the set of possible (or likely) concepts.
This knowledge is defined in terms of the concept class, which is the set of all a-priori
possible concepts.

In this paper we study concept learning in a probabilistic setting. Here the exam-
ples that are given to the learning algorithm are generated by choosing the instances
at random from a distribution over the instance space. This distribution is arbitrary
and unknown to the learner. The central measure of the quality of a learning algo-
rithm in the probabilistic setting is the accuracy of the hypotheses that it generates.
The accuracy of a hypothesis is the probability that it classifies a random instance
correctly. The accuracy of the hypotheses that are generated by a learning algorithm
is expected to improve as the resources available to the algorithm are increased. The
main resources we consider are the number of examples used for learning and the time
and space available to the learning algorithm. One of the main results of this paper is
an upper bound on the resources required for learning in the distribution-free model
of learnability introduced by Valiant [Val84].

In Valiant’s model, commonly referred to as the PAC (Probably Approximately Cor-
rect) learning model, or the distribution-free learning model, the quality of a learning
algorithm is defined as follows. A learner is said to have accuracy 1 — ¢ with reliability
1 — 6 if it generates a hypothesis whose accuracy is at least 1 — ¢ with probability at
least 1 — 6. The probability that the algorithm fails is measured with respect to the
random choice of the examples given to the learning algorithm and possible internal
randomization of the algorithm.!

As was recognized by Haussler et. al. [HKLW91], increasing the reliability of any
learning algorithm is easy. This can be done by testing the hypothesis generated by the
algorithm on an independent set of examples to validate its accuracy. If the accuracy
is not sufficient, the algorithm is run again, on a new set of random examples. It is
easy to show that increasing the reliability from 1 — §; to 1 — é3 can be achieved by
running the algorithm O(log(1/8)/(1 — é1)) times.?

Improving the accuracy of a learning algorithm is much harder. Two different
variants of the PAC model were introduced by Kearns and Valiant [KV94] to address
this issue. In strong PAC learning, which is the more common model, the learner
is given the required accuracy, €, as input, and is required to generate a hypothesis
whose error is smaller than e. The resources used by the algorithm can grow at most
polynomially in 1/e. On the other hand, in weak PAC learning the accuracy of the
hypothesis is required to be just slightly better than 1/2, which is the accuracy of a
completely random guess. When learning with respect to a given distribution over the
instances, weak and strong learning are not equivalent. Kearns and Valiant [KV94]
proved that monotone boolean functions can be learned weakly, but not strongly, with
respect to the uniform distribution.

This seemed to indicate that weak and strong distribution-free learning should also
be separated. However, Schapire [Sch90] proved that weak and strong PAC learning are
equivalent in the distribution-free case. Schapire presented an algorithm that, given

!The exact definition of the PAC learning model is given in Section 3.1.
ZA full analysis of this algorithm is given in Appendix B.

access to a weak learning algorithm, can generate hypotheses of arbitrary accuracy
using time and space resources that are polynomial in 1/e. This algorithm is called
a “boosting” algorithm. The main idea is to run the weak learning algorithm several
times, each time on a different distribution of instances, to generate several different
hypotheses. We refer to these hypotheses as the “weak” hypotheses. These weak
hypotheses are combined by the boosting algorithm into a single more complex and
more accurate hypothesis. The different distributions are generated using an ingenious
“filtering” process by which part of the random examples that are presented to the
boosting algorithm are discarded, and only a subset of the examples are passed on
to the weak learning algorithm. It turns out that corollaries of this important result
give good upper bounds on the time and space complexity of distribution-free learning.
Schapire’s result also has many important implications related to group-learning, data-
compression, and approximation of hard functions.

In this article we present a simpler and more efficient boosting algorithm. Schapire’s
boosting algorithm is defined recursively. Each level of the recursion is a learning
algorithm whose performance is better than the performance of the recursion level
below it. The final hypothesis it generates can be represented as a circuit consisting
of many three-input majority gates. The input to the circuit are the labels produced
by the weak hypotheses, and the output is the final label (see Figure 1). The depth
of the circuit is a function of the problem parameters (accuracy and reliability), and
its structure can vary between runs. The definition of our boosting algorithm, on the
other hand, is not recursive and the final hypothesis can be represented as a single
majority gate. This majority gate combines the outputs of all of the weak hypotheses.

(b)

] eptnzsgsimee
{6 JU0 UUL }D (M) ey gate

Figure 1: Final concepts structure: (a) Schapire (b) A one-layer majority circuit.

(@)

In this paper we present two variants of our boosting algorithm. The first is boosting
by finding a consistent hypothesis. This variant of the algorithm finds a hypothesis
which is consistent with a large set of training examples. The analysis of this variant is
quite straightforward, and its performance is close to the best performance we achieve.
It also seems to be the variant whose application to practical learning problems is more
efficient [Dru93]. The major drawback of this method is that it requires storage of the
whole training set, which yield a space complexity dependence on ¢ of O((log1/¢)?/¢)
(assuming that the concept class is fixed and that its VC dimension is finite). While
this space requirement is often taken for granted, Schapire’s algorithm demonstrates
that boosting can be achieved using only poly-log(1/¢€) space.

We thus present a second variant of our algorithm, which we call boosting by filtering.
This algorithm selects a small subset of the training examples as they are generated, and
rejects all other examples. The sample complexity (number of training examples) of this
version of the algorithm with respect to ¢ is O((1/¢)(log1/€)*/?(loglog 1/¢)), its time
complexity is O((1/¢)(log1/¢)%/*(loglog 1/¢)), its space complexity is (log 1/¢)(loglog 1/¢))
and the number of weak hypotheses it combines is O(log 1/¢).

The boosting by filtering algorithm is a completely general method for improving
the accuracy of PAC learning algorithms. Its performance thus gives general upper
bounds on the dependence of the time and space complexity of efficient PAC learning
on the desired accuracy. These bounds are, to the best of our knowledge, the best
general upper bounds of this kind that are known today. We present some lower
bounds that show that the possibilities for additional improvement are very limited.
In particular, we show that there cannot be a general boosting algorithm that combines
a smaller number of weak hypotheses to achieve the same final accuracy.

We also present generalizations of the algorithm to learning concepts whose out-
put is not binary. One generalization is for concepts with k-valued outputs and is
quite straightforward. Another generalization is to real-valued concepts. We show how
boosting can be used in this case to transform a learning algorithm that generates
functions whose expected error over the domain is bounded by ¢ into a learning algo-
rithm that generates functions whose error is bounded by 2¢ over most of the domain.
Intuitively, this gives a method for “spreading” the error of algorithms for learning real
valued functions evenly over the domain.

We also extend our result to distribution-specific learning. We show that our algo-
rithm can be used for boosting the performance of learning algorithms whose accuracy
depends on the distribution of the instances. Suppose we have a learning algorithm
A, which achieves accuracy 1 — ¢ with respect to the distribution D. If A achieves
accuracy 1 — € for every distribution of the examples then boosting can be used to
achieve arbitrary accuracy with respect to D. However, in real world problems, A’s
accuracy usually depends on the distribution of the examples. We show that if A’s
accuracy degradation is not too abrupt, then boosting can still be used to generate a
hypothesis whose accuracy is better than 1 — .

Schapire [Sch92], noted that the results presented in this paper can be used to
show an interesting relationship between representation and approximation using ma-
jority gates. These results were independently discovered by Goldmann, Hastad and
Razborov [GHR92]. However, while their proof technique is very elegant, our proof is
more constructive (for details see Section 2.2).

It is surprising to note that the boosting algorithm uses only a small fraction of the
examples in the training set. While it needs Q(1/¢) examples to generate a hypothesis
that has accuracy €, only O(log1/¢) of them are passed to the weak learners. Two
interesting implications arise from this fact. The first implication was pointed out
to us by Schapire [Sch92]. It can be shown that if a concept class is learnable then
the following type of compression can be achieved: Given a sample of size m, labeled
according to some concept in the class, the boosting algorithm can be used to find
a subsample of size O(logm) such that the labeling of all of the instances in the
sample can be reconstructed from the labels of the subsample. This strengthens the
relationship between compression and learning which has been studied by Floyd and
Warmuth [FW93].

The second implication was found together with Eli Shamir [Sha92]. We observed

that if training examples can be accumulated in parallel by several parallel processors,
then our methods can translate any PAC learning algorithm to a version that runs in
time O(log1/¢) on a parallel computer with ©(1/¢) processors. This is because most
of the examples that are given to the boosting algorithm are simply discarded and the
search for a “good” example can be done by many processors in parallel.

The Paper is organized as follows. The main Theorem on which our boosting
algorithms are based is given in Section 2 using a simple game-theoretic setting that
avoids some of the complications of the learning problem while addressing the main
underlying problem. In Section 3 we relate the theorem back to the learning problem,
in Section 4 we present some extensions, and in Section 5 we summarize and present
some open problems.

In Section 2 we present a game, called the “majority-vote” game, between two
players, a “weightor” and a “chooser”. The game consists of k iterations. For simplicity
we now assume that the game is played on the set {1...N}. In each iteration the
weightor assigns to the N points non-negative weights that sum to 1. The chooser has
to then “mark” a subset of the points whose weights sum to at least 1/2 4+ v, where
0 <~ <1/2is a fixed parameter of the game. The goal of the weightor is to force the
chooser to mark each point in the space in a majority of the iterations, i.e. each point
has to receive more than k/2 marks. We show that there exists a strategy that lets
the weightor achieve that goal in [%7_2 In N iterations. A similar game can be played
on a general probability space, in which case the goal of the weightor is to force the
chooser to mark all but an ¢ fraction of the space in the majority of the iterations. We
show that k& = [377%In 1/€] iterations suffice in this case.

The weightor in this game represents the centerpiece of the boosting algorithm,
which is the choice of the distributions that are presented to the weak learning algo-
rithm. The points that the chooser decides to mark correspond to the instances on
which the weak learner makes the correct prediction. This represents the freedom of
the weak learner to distribute the error of the hypothesis in any way it chooses as long
as the probability that a random instance is labeled correctly is at least 1/2+ 5. This
abstraction bypasses some of the complexities of the PAC learning problem, and can
be read independently of the rest of the paper. In Subsection 2.1 we show that in
the case of continuous probability spaces, there is a strategy for the chooser such that
for any strategy of the weightor, if the game is stopped in less than k& = [%7_2 In1/¢€]
iterations, more than € of the space is marked less than k/2 times, i.e. the weightor fails
to achieve its goal. Thus our weighting strategy is optimal for the case of continuous
probability spaces. In Subsection 2.2 we present the implication of our analysis of the
majority-vote game on the representational power of threshold circuits.

In Section 3 we relate the majority-vote game to the problem of boosting a weak
learner and present the two variants of the boosting algorithm and their performance
bounds. In order to simplify our analysis we restrict our analysis in Subsections 3.2
and 3.3 to the case in which the weak learning algorithms are deterministic algorithms
that generate deterministic hypotheses. In Subsection 3.4 we show that this analysis
needs to be changed only slightly to accommodate randomized learning algorithms
that generate randomized hypotheses. In order to present the complete dependence of
our bounds on the parameters of the problem, we don’t use the notational conventions
of polynomial PAC learning in our main presentation, but rather give explicit bounds
including constants. Later, in Subsection 3.5, we derive upper bounds on the resources
required for polynomial PAC learning that are the best general upper bounds of this

type that exist to date. In Subsection 3.6 we compare our upper bounds to known
lower bounds and discuss which aspects of our bounds are optimal and which might
be further improved.

In Section 4 we give several extensions and implications of our main results. In
Subsection 4.1 we show that our algorithm for boosting by filtering can work even in
situations where the error of the hypotheses generated by the weak learning algorithm
is not uniformly bounded for all distributions. In Subsection 4.2 we present a version
of the boosting algorithm that works for concepts whose range is a finite set, and in
Subsection 4.3 we present a version that works for concepts whose range is real valued.
In Subsection 4.4 we show how boosting can be used to parallelize learning algorithms.
We conclude the paper with a summary and a list of open problems in Section 5. In
the appendixes to the paper we give a summary of our notation and proofs of three
lemmas. The meaning of some of the notation used in this paper has slightly different
interpretations in different parts of the paper. The table in Appendix A.3 summarizes
the different interpretations and might be a useful reference when reading the paper.

2 The majority-vote game

In this section we define a two-player, complete information, zero-sum game. The play-
ers are the “weightor”, D, and the “chooser”, C. The game is played over a probability
space (X, X, V), where X is the sample space, ¥ is a o-algebra over X, and V is a
probability measure. We shall refer to the probability of a set A € X as the value of
the set and denote it by V(A). A real valued parameter 0 < v < 1/2 is fixed before
the game starts.

The game proceeds in iterations, in each iteration:

1. The weightor picks a weight measure on X. The weight measure is a probability
measure on (X, YX). We denote the weight of a set A by W(A).

2. The chooser selects a set U € X such that W(U) > 1 + 4, and marks the points
of this set.

These two-step iterations are repeated until the weightor decides to stop. It then
receives, as its payoff, the subset of X that includes those points of X that have been
marked in more than half of the iterations played (if the number of iterations is even
this set does not include points that have been marked exactly half the time). We shall
refer to this set as the reward set and to its value as the reward. The complement of
the reward set is the loss set. The goal of the weightor is to maximize the reward, and
the goal of the chooser is to minimize it.

The question about this game in which we are interested is whether there exists
a general strategy, independent of the specific probability space that guarantees the
weightor a large reward. An affirmative answer to this question is given in this section.
We describe a general strategy for the weightor such that for any probability space
(X,%,V) and any €,v > 0, the weightor can guarantee that the reward is larger than
1 — ¢ after at most %(%)2 In 1 iterations.

We shall present the weighting strategy in the following way. We start by giving
some insight, and show what weighting strategies are reasonable. We then present the
weighting strategy, and prove a bound on the reward that it guarantees. Finally we
show that for non-singular sample spaces (such as a density distribution on R") there

is a matching strategy for the adversary, implying that our strategy is the optimal
minimax strategy when the sample space is non-singular.

In the following discussion we are fixing a particular instance of the game, i.e. we
consider a particular sequence of moves taken by the two players. Let & be the number
of iterations in the game. For 0 < i < k define {X¢, X1,..., X!} to be a partition of X
into 7 + 1 sets where Xﬁ consists of those points in X that have been marked r times
after ¢ turns of the game have been played.

tai
number of marks p Success
r = 01 S3 7
K
2 \>>
8
8 I ’ s3<//
0N, 177 1N 3/
5. 5 51<0
8
0 3.7
S
0°\ R
I . %1 u%’lél
stage of game
PEE

Figure 2: Transitions between consecutive partitions

As graphically presented in Figure 2. in iteration ¢, the chooser decides for each
point in X! whether to mark it or not, thus placing it in X;:H or in X'*'. The goal of
the chooser is to minimize the value of the reward set: U¥_ Lk/2J+1Xf‘ The goal of the
weightor is to maximize this value. By giving some points more weight than others, the
weightor forces the chooser to mark more of those points. In the extreme, by placing
all the weight on a single point it guarantees that this point will be marked while at
the same time allowing the chooser not to mark any other point, moving them closer
to the loss set.

Let us define some notation (a complete notation table appears in Appendix A.3):

k the total number of iterations the game is played.

X} the set of points that have been marked r times in the first ¢ iterations.
M!=X!nN X;:H the subset of X that is marked in iteration 2.

g = V(X}) the value of X .

zl = % the fraction of X! that is marked in iteration i.

L the loss set, i.e. those points that are in the end marked
less than or equal to half the time.

Note that XJ = X and thus ¢) = 1.

Observe that if 7 > k/2, then points in X! are guaranteed to be in the reward set.
Likewise, if i — r > k/2 then points in X' are guaranteed to be in the loss set. Thus
it is intuitively clear that any reasonable weighting scheme will give zero weight to
these points and place all the weight on those points for which both failure and success
are still possible. In particular, the only points that should be assigned a non-zero
weight in the final iteration are points in ka—12 . We now present a weighting strategy
that agrees with this intuition, and prove that this strategy guarantees the claimed
performance.

The weighting strategy assigns a weighting factor o' to each set X! where 0 < r <
i < k — 1. If the space is discrete then the weight assigned to the point z € X! on
round 14, is the value of the point times a’ times a constant normalization factor that
makes the total weight be one (the definition of the weighting for non-discrete spaces
is given in the statement of Theorem 2.1).

The weighting factor is defined inductively as follows:

k_lz{ 1ifr=|%

a ’

’ 0 otherwise

and for 0 < i<k —2:
3 1 ; 1 3
Q, = (5_7) ar+1+ <§+7) aT—I-I—-ll .

Recall that v is a parameter of the majority-vote game that is fixed before the game
starts. Clearly there is only one function of i, k,r and + that satisfies this inductive
definition. It can be verified that this function is the following binomial distribution.

: k—i—1\ 1 5,1 Bl i1ty
%:(; T)g+va<5—wB‘ T (1)

Here, and throughout the paper, we define (') = 0 if m < 0 or m > n and (8) = 1.
The performance of our weighting strategy is given in the following theorem:

Theorem 2.1 For any probability space (X,%, V) and any €,v7 > 0, if the weightor
plays the majority-vote game for k iterations, where k satisfies

1£]
ﬁ)§+wyg—vfﬂs€, 2)

j=0 \J

and uses the following weighting in® iteration i
For any set A in the o-algebra X

W) = 3 V(AN Xial /7, 3)

r=0

where Z; = Z V(XHat |

r=0

then the reward at the end of the game is at least 1 — ¢, independent of the strategy
used by the chooser.

Before proving the theorem, we define the function 8¢ over 0 < r < i < k which
we call the “potential” of the set Xi. As we shall see the potential of X' predicts, in
some sense, the fraction of points in X! that will end up in the loss set. As at the end
of the game we know which points are in the loss set and which are in the reward set,
it is reasonable to define the potential for i = £ as

E 0 ifr>
ﬂT—{ 1 ifr<

(4)

[T T

For « < k we define the potential recursively:
7 1 i+1 1 i+1
gi= (5)0t () A 5)

It can be easily verified that a closed form formula for 3! is given by the tail of the
binomial distribution:

))G G-)

i=0

The weight factor function, o, is in some sense a discrete derivative of the potential
function along the r axis:

ol = gt gitt (7)
The main property of the weighting scheme is that it guarantees that the average
potential does not increase at any step. This property is proved in the following lemma.

Lemma 2.2 If the weighting scheme described in Fquation (3) is used by the weightor,
then

1 2 k

0 1,1 22 k nk

ﬁOZZqTﬁTZZqTﬁTZZZqT T
r=0 r=0 r=0

for any strategy of the chooser.

3In the special case where X is discrete, it is sufficient to define the weight of each point. In this case we

set W(z) = alV(z) for all z € X! .

Proof of Lemma 2.2: Recall that ¢/ = V(X!) and 2% = VM) At each iteration

, ToVxy”
¢ the adversary chooses the variables 0 < 2! < 1, and we get the following formula for

the transition to the next iteration:

¢t = qgmo + ‘172;(1 - 952«) for 1<r<i (8)
qé"’l = qé(l - $6) for r=0,

qji%—qfwj for r=4i4+1.

Using this we can get a formula that relates the sum Y'_ ¢ for consecutive
iterations.

i+1
qu—l—lﬁH—l = 2(1 - Z Z+1 + Z QT lxr 1 + %“(1 -z)]ﬁl—l—l + qu zﬁz—l—l:% .
r=1
and rearranging the sum gives us that
doattptt = Z G[(1—2l)p a8 = Z a0 + Z Gl =85 . (9)
r=0

On the other hand, from the weight restriction we get:
> (M) > 5T (10)
r=0
and as M C X! the definition of the weight function gives:

—ZVM;Z

ZTO

+7. (11)

N | —

Using the definitions of ¢, #i and Z; this can be written as

1
Z’/’ OQT 7’ 7’ > =
Z OQT 2

Using Equation (7) and the fact that git! > ﬁ;"_l'_ll we get that

+7. (12)

S qau(pi - gt < +—7 j{qu (Bt = pithy . (13)
r=0

Substituting (13) into the right hand side of (9) we finally get that

i+1

1 LN .
Zq Tt < Zq B GHN GBh -8 =
r=0

S ail + B + (5 - WIEhﬂ
r=0

The last equality is based on Equation (5). |

10

Proof of Theorem 2.1 From Equation (6) it is immediate that the left hand side
of Equation 2 is equal to 33, thus, by choice of k, 83 < e, which means that the initial
expected potential is small. Combining this with the inequality from Lemma 2.2, that
implies that the potential never increases, we get that

k
k _k
> 00> Brar .

r=0

On the other hand, from Equation (4) we have:

k

15
Y0 =) ¢ =V(L).
r=0

r=0

Thus the value of the loss set L is at most €. |

In order to see that the result given in Theorem 2.1 is meaningful, we give an
explicit choice for k that is close to the optimal choice for small € and ~.

Corollary 2.3 Theorem 2.1 holds if the number of iterations satisfies

k> Lln i .

2792 2¢
Proof: Suppose that a biased coin, whose probability for heads is 1/2 + 7, is tossed
k times. The left hand side of Inequality (2) describes the probability that at most
half of the coin tosses come up heads. We can upper bound the probability of this
event as follows. The number of sequences of k coin tosses that have at least as many
heads as tails is at most 2=, The probability of any single sequence is at most
[(1/2 = ~)(1/247)]*/2. Thus we get that a sufficient condition on k for Inequality (2)
to hold is

2 (12 =)(1/24 9] < e
Reordering this inequality we get that it is equivalent to

1

In &
k/2> ———2¢
/22 —1In(1 - 442)
Using the fact that In(1 —2) < —2 for 0 < 2 < 1 we find that the condition on £ in the
statement of the corollary is a sufficient condition condition for Inequality (2). |

2.1 Optimality of the weighting scheme

We shall now show that, in some natural cases, the weighting strategy devised in this
section is optimal in that it guarantees the weightor the minimal possible loss which
is achievable in k iterations. We show this by giving a strategy for the chooser which
guarantees a loss which is at least as large as the loss which our weighting strategy
suffers. The idea of the choosers strategy is to mark points so that the values of the
marked sets are equal to the expected value if the points where marked independently
at random with probability 1/2 4 ~.

We now define a property of the probability space (X, X, V) which is sufficient for
showing optimality of our weighting scheme. We say that (X, X, V) is divisible if for

11

any measurable set A € ¥ there exists another set A’ € X such that V(A') = 1V (A).
One natural example of a divisible space is the Euclidean space X = R"™, where X is
the Borel algebra over R™ and the measure V is a density measure that assigns all
single points a value of zero.

The weighting strategy defined in this section is optimal for divisible probability
spaces, as is summarized in the following theorem.

Theorem 2.4 If the probability space (X, X, V) is divisible, then there exists a strategy
for the chooser such that for any k and =, the loss is at least

15]
4 (’j)(% FPG = (14

J=0

This means that the choice of k in Equation 2 of Theorem 2.1 is the smallest possible.
In order to prove the theorem, we need the following technical lemma, whose proof
is given in the appendix.

Lemma 2.5 Suppose that the probability space (X,%,V) is divisible, and that W 1is
another probability measure defined on (X,%).

Then for any set A € X there exists a set A" C A, A" € ¥ such that V(A') =
(1/247)V(A) and W(A") = (1/24~)W(A)

Proof of the theorem: Let us denote the set of points in X that have been marked
in a particular way by Xg, where s =< s1,89,...,5; > is a binary vector of length
¢ < k such that s; is 1 if # has been marked on iteration j and 0 otherwise. The goal
of the chooser is to mark points so that for each sequence of marks s, the probability
of Xg would be equal to the probability that s is generated by ¢ random draws of a
biased coin whose probability of heads is 1/2 + 4.

The strategy is defined as follows. In the ¢th iteration, the space X is divided into
the 2°~1 sets Xy corresponding to the different binary sequences of length i — 1. From
Lemma 2.5 we get that for each s the exists a set Ag C Xg in X such that such that
V(As) = (1/2 4+ v)V(Xs), and W(Ag) > (1/2 + v)W(Xs). The chooser marks the
points in the set UsAg which makes Xg; be Ag and Xgo be Xg N Ag. This is a legal
marking because of the condition on W(Ag).

The loss set is

k

k
U{Xs|s =< 81y, Sk > ZZ:;SZ' < 5}

It is easy to calculate the value of the loss set and show that it is equal the loss defined
n (14), which completes the proof.

It is easy to construct cases of non-divisible spaces. In particular, any finite space
is not divisible. This, it is very likely that some improvement to the results given in
this paper are possible for finite sample spaces. However, it seems that the possibility
for improvement decreases rapidly as the size of the sample space increases.

12

2.2 The representational power of majority gates

Our analysis of the majority-vote game can be used to prove an interesting result
regarding the representation of Boolean functions as a majority over other Boolean
functions. This application of boosting has been discovered by Schapire [Sch92]. A
slightly weaker version of this result was independently proven by Goldmann, Hastad,
and Razborov [GHR92] using a completely different proof technique. In the following
presentation we follow their notation.

Let f denote a Boolean function whose domain is {—1,1}" and range is {—1, 1}. Let
H be a set of Boolean functions defined over the same domain and range. Intuitively,
the result is that if, for any distribution over the domain {—1,1}", there is some
function h € H such that f and h are correlated, then f can be represented as a
majority over a small number of functions in H.

In order to give the formal statement we define the following notation. We use D
to denote a distribution over the domain {—1,1}" and define the correlation between
f and H with respect to D as

Dii(f) = max Ep[f()h(x)]

The distribution-free correlation between f and H is defined as
Dir(f) = mjn DR(/)

The majority function is defined as follows

k
MAJ(zq,...,21) = sign (sz) ,
=1

where
ign(z) = 1, ifz>0
SEm) = —1, otherwise °

Using our boosting algorithm we prove the following result:

Theorem 2.6 Let f be a Boolean function over {—1,1}" and H be a set of functions
over the same domain. Then if k > 21n(2)nD;I2(f), then f can be represented as

fle)= MAJ(hi(x),...,he(2))
for some h; € H.

Proof: Assume the majority-vote game is played over the domain {—1,1}" and
that the value of a set is the number of points in it divided by 2". Assume the
chooser in the majority-vote game chooses which points to mark by selecting a func-
tion h € H such that Prp(h(z) # f(2)) < 1/2 — v and marking all 2 such that
h(z) = f(z). By definition of Dg(f), such a function exists for every distribution D if
v = Dp(f)/2. Theorem 2.1 provides us with a method for selecting the distributions
D;, which correspond to the the weightings W,;. This selection guarantees that the
majority over the corresponding hypotheses will be very close to f. More specifically,
it guarantees that if & = 1/2y72%In1/¢, the number of points z € {—1,1}" such that
MAJ(hi(x),...,hg(z)) # f(x) is smaller than €2", by setting ¢ < 27" we guarantee

13

that MAJ(hq1(2),...,hx(2)) = f(z) for all 2 € {—1,1}". Plugging our selection for -y
and ¢ into k = 1/2y7%1n ¢ we finish the proof. |

Goldmann, Hastad and Razborov ([GHR92]), prove Theorem 2.6 using a elegant
application of von Neumann’s Min-Max Theorem. However, their proof does not show
how one can find the functions h; € H. On the other hand, our proof is constructive in
that it shows how to generate the distributions that correspond to the desired functions.

For completeness we give a simple lemma (Lemma 4 in [GHR92]) that gives an
approximate converse to Theorem 2.6.

Lemma 2.7 Let f and H be as in Theorem 2.6. Then if [can be represented as
fle)= MAJ(hi(x),...,he(2))
where h; € H and k is odd, then Dy(f) > 1/k.

Proof: From the definition of the majority function and the fact that k is odd, we get
that for every € {—1,1}", there are at least (k+1)/2 indices 7 such that h;(z) = f(2).
Fixing any distribution D over {—1,1}", we get that

k
2 Prp(hi(w)=f(z))= 3 Pro(e:[{l <i<k[hi(z)=f@)} > (k+1)/2).

ce{-1,1}"

The pigeon-hole principle guarantees that there exists at least one index 1 < ¢ < k
such that Prp (h;(z) = f(z)) > (k + 1)/2. This implies that DE(f) > 1/k. As this
holds for all D, we get the statement of the lemma. |

3 Boosting a weak learner using a majority
vote

In this section we shall describe the connection between the majority-vote game and
the problem of boosting a weak learning algorithm.

We start by presenting a minimal formal framework for analyzing our boosting
algorithms. We then present our algorithms and their analysis. Later, in Section 3.5,
we give a more complete notational framework, and use this framework to relate our
results to other results in PAC learning theory.

3.1 Preliminaries

We start by giving the definitions of a minimal framework of distribution-free concept
learning that is needed for presenting our main results. A concept is a binary-valued
mapping over some domain X. We use the letter ¢ to denote a concept and ¢(z) to
denote the label of the instance x according to the concept ¢. A concept class C is a
collection of concepts.?

*In order to define polynomial PAC learnability, the complexity of the sample space and of the concept
class need to be parameterized. In our initial basic setting we suppress this parameterization and the issue
of polynomial versus non polynomial learning, we return to fully discuss this issue in Section 3.5.

14

The learner’s task is to learn an approximation to a concept ¢. The learner knows
a-priori that the concept is in some known class C, but has no prior knowledge of
the specific choice of ¢ € C. The learner is assumed to have access to a source EX
of examples. Fach time EX is called, one instance is randomly and independently
chosen from X according to some fixed but unknown and arbitrary distribution D.?
The oracle returns the chosen instance # € X, along with its label according to the
concept ¢, which is denoted c¢(z). Such a labeled instance is called an ezample. We
assume EX runs in unit time.

Given access to EX the learning algorithm runs for some time and finally outputs
a hypothesis h. The hypothesis is a description of an algorithm (possibly probabilistic)
that receives as input an instance x € X and generates a binary output. This output
is called the “prediction” of the hypothesis for the label ¢(z). We write P(h(z) = ¢(2))
to indicate the probability, over the distribution 2 on X and random coin flips of the
hypothesis, that the hypothesis correctly predicts the labels of the concept ¢. This
probability is called the accuracy of the hypothesis h. The probability P(h(z) # c(z))
is called the error of h with respect to ¢ under D; if the error is no more than ¢, then
we say h is e-good with respect to the target concept ¢ and the distribution D.

We say that a learning algorithm A has a uniform sample complexity m(e, §) if it
achieves the following performance. For all 0 < €,6 < 1, all D, and all ¢ € C, after
receiving the parameters € and § as inputs, algorithm A makes at most m(e,) calls
to EX and outputs a hypothesis i that with probability at least 1 — ¢ is an e-good
approximation of ¢ under D. Similarly we define the time and space complexity of A to
be functions that bound the time and space required by A and denote them by t(¢, ¢)
and s(e,) respectively. If a learning algorithm cannot achieve some values of € and ¢,
or if the resources required for achieving these values are not uniformly bounded for all
distributions and concepts, we define m(e,d),t(€,6) and s(e€,§) to be infinite for these
values.

The concept of a boosting algorithm was first presented by Schapire in [Sch90]. A
boosting algorithm is a learning algorithm that uses as a subroutine a different learning
algorithm. The goal of the boosting algorithm is to efficiently generate high-accuracy
hypotheses using a learning algorithm that can efficiently generate only low-accuracy
hypotheses. The boosting algorithm invented by Schapire [Sch90], was a breakthrough
in that it showed that any polynomial time learning algorithm that generates hypothe-
ses whose error is just slightly smaller than 1/2 can be transformed into a polynomial
time learning algorithm that generates hypotheses whose error is arbitrarily small. The
boosting algorithms presented in this paper achieve better performance than those
presented by Schapire and the resulting hypotheses are simpler. A comparison of the
performance of the algorithms is given in Section 3.5.

We use the generic name WeakLearn to refer to the learning algorithm whose per-
formance we wish to boost, and we refer to those hypotheses generated by WeakLearn
that have the guaranteed accuracy as weak hypotheses. We assume that there exist
some real values 0 < ¢y < 1/2 and 0 < ég < 1 such that WeakLearn, given mg exam-
ples labeled according to some concept ¢ € C, generates a hypothesis whose error is at
most € (i.e. a weak hypothesis) with probability at least 1 — ¢y over the distribution

®More formally, we assume that (X, X, D) is a probability space, and that C is a set of functions that are
measurable with respect to X. Moreover, we assume that all subsets of X that are considered in this paper
are measurable with respect to X.

15

of the training examples. We denote by mg,tg, and sg uniform upper bounds on the
sample size, time, and space required by WeakLearn to achieve this accuracy. The
boosting algorithms that we shall describe are able to generate hypotheses of arbitrary
accuracy € with arbitrarily high reliability 1 — 6.

The parameters ¢y and 6y measure the discrepancy between the performance of
WeakLearn and the performance of an “ideal” learning algorithm that always gener-
ates a hypothesis that has no error with respect to the target concept. The performance
of the weak learning algorithms that we discuss is extremely poor. They are almost
completely unreliable, and even when they succeed, they output a hypothesis whose
error is close to that of a random guess. We thus find it useful to define two new
quantities ¥ = 1/2— ¢y and A = 1 —§p. These parameters measure how far the learning
algorithm is from a completely useless algorithm and arise naturally in the design and
analysis of our boosting algorithms. We shall show that the resources required by our
algorithms are uniformly bounded by functions whose dependence on 1/v,1/A,1/¢, and
1/6 is either logarithmic or low-order polynomial.

For the main part of our analysis, in Sections 3.2 and 3.3, we restrict ourselves
to boosting deterministic learning algorithms that generate deterministic hypotheses.
Later, in Section 3.4, we show that all of our algorithms and their analysis hold, with
very little change, for the case that the learning algorithm and the resulting hypotheses
are randomized.

3.2 Boosting using sub-sampling

One simple way of applying the results of the majority-vote game to boost the per-
formance of WeakLearn is by using it to find a small hypothesis that is consistent
with a large set of training examples. The algorithm BSamp? which is summarized in
Figure 3, is based on this principle.

The first step of BSamp is to collect a training set. Formally, this means making

m calls to EX, generating the set S = {(21,01),...,(2m,ln)}.5 The goal of boosting
is to generate a hypothesis that is correct on all examples in 5.

As the sample is a finite set of size m, the requirement that a hypothesis is correct
on all points in the sample is equivalent to the requirement that the hypothesis has
error smaller than 1/m with respect to the uniform distribution on the sample. In
order to do that, BSamp generates different distributions on the training sample, and
each time calls WeakLearn to generate a weak hypothesis, that is, a hypothesis that
has error smaller than 1/2 — v with respect to the given distribution. Each different
distribution forces WeakLearn to generate a weak hypothesis whose errors are on
different sample points.” The goal of the boosting algorithm is to control the location
of these errors in such a way that after a small number of weak hypotheses have been
generated, the majority vote over all weak hypotheses will give the correct label on
each point. In other words, for each point in 5, the fraction of the weak hypotheses
that assign the point with the correct label is larger than half.®

In many actual machine learning scenarios, the training set .S is the basic input to the learning algorithm,
and thus this step is only formal.

“Ignoring, for a moment, the fact that WeakLearn has probability &, of failing to generate a weak
hypothesis.

SHere, and in the rest of this section, we make no assumption about the output of the majority vote when

16

Algorithm BSamp
Input: EX ,WeakLearn, v, m
Output: A hypothesis that is consistent on a random sample of size m.

1. Call EX m times to generate a sample S = {(z1,01),...,(Zm,ln)}.
To each example (z;,/;) in S corresponds a weight w; and a count r;.
Initially, all weights are 1/m and all counts are zero.

2. Find a (small) k£ that satisfies

: k 7 k—1 1
2 | Ja2=ya24) <~
i=[k/2]
(For example, any k > 1/(27%)In(m/2) is sufficient.)
3. Repeat the following steps for :=1...k.
(a) repeat the following steps for [=1...(1/\)In(2k/6)
or until a weak hypothesis is found.

i. Call WeakLearn, referring it to FiltEX as its source of examples,
and save the returned hypothesis as h;.

ii. Sum the weights of the examples on which h;(z;) # ;.
If the sum is smaller than 1/2-—~

then declare h; a weak hypothesis and exit the loop.

(b) Increment 7; by one for each example on which h;(z;) =1;.

(c) Update the weights of the examples according to w; = 0‘3«] s
a. is defined in Equation (1).

(d) Normalize the weights by dividing each weight by > 7", w;.

4. Return as the final hypothesis, hjs, the majority vote over hy,...,hk.
Subroutine FiltEX

1. choose a real number z uniformly at random in the range 0 <z < 1.

2. Perform a binary search for the index j for which

J—1 J
Swige<w
=1 =1

(%, w; is defined to be zero.)

3. Return the example (z;,[;)

Figure 3: A description of the algorithm for boosting by sub-sampling

17

The problem of generating these distributions is equivalent to the problem of the
booster in the majority-vote game described in the previous section, under the following
correspondence of terms. The value of a point corresponds to the probability assigned to
the point by the target distribution (the uniform distribution in our case). The weight
of a point corresponds to the probability assigned to it by the boosting algorithm. The
decision of the adversary to mark a point corresponds to the decision by WeakLearn
to generate a weak hypothesis that is correct on the point. The reward set corresponds
to the set on which the majority vote over the weak hypotheses is correct and the loss
is the probability that the majority makes a mistake, measured with respect to the
target distribution. This correspondence lies at the center of the analysis of algorithm
BSamp'

Before we give the first theorem regarding the performance of BSamp we must
address the fact that WeakLearn is not guaranteed to always generate a weak hy-
pothesis. This event is only guaranteed to happen with probability A. However, it
is easy to check the hypothesis returned by WeakLearn and calculate its error on
the sample. If this error is larger than ¢g = 1/2 — v, WeakLearn is called again,
using a different subset of the examples in S.° This is the role of statement 3.a.ii of
BSamp' However, this test has non-zero probability of failing any arbitrary number
of times. In order to guarantee that the boosting algorithm has uniform finite running
time, Bg, 1, tests only a pre-specified number of hypotheses. As we shall show in the
second part of the proof of Theorem 3.2, the probability that all these hypotheses will
have error larger than €y is smaller than §/2. The following theorem shows that if all
k iterations manage to find a weak hypothesis, then the final hypothesis generated by

BSamp is consistent with all the labels in the sample.

Theorem 3.1 If all the hypotheses that are used by algorithm BSamp are €g-good, then

the hypothesis hys, output by s consistent on the sample 5.

BSampf

Proof: From the correspondence with the majority-vote game defined above, and from

Theorem 2.1, we get that the error of the hypothesis output by is smaller than

Bgam
p
1/m, As the target distribution is uniform it assigns each point in 5 with probability

1/m. Thus the output hypothesis must be correct on all points in 5. |

Two issues remain in order to show that BSampiS an effective learning algorithm.
First, we need to show that there is a way for selecting m, the size of the sample 5, so
that the hypothesis generated by BSamp?
will also have a small probability of error on a random example outside of 5. Second,
we need to show that the algorithm uses uniformly bounded resources.

The fact that using a large enough sample guarantees that a consistent hypothesis
will have small error on the whole domain stems from the fact that &, the number
of hypotheses that are combined by the majority rule, increases like O(log|S5|), as
was proven in Corollary 2.3. Before getting into a detailed proof, let us give a rough
sketch of a proof for a simple special case. Assume that the hypotheses generated
by WeakLearn are chosen from a finite set of hypotheses H. Denote the set of

which is guaranteed to be consistent on S5,

the number of votes is split evenly. When we calculate upper bounds on the probability of mistake we use
the pessimistic assumption that all these cases are decided incorrectly. We use the opposite assumption for
the lower bounds.

9Note that as WeakLearn is guaranteed to succeed with probability at least A on any distribution over
the sample space, it 1s guaranteed to succeed on the uniform distribution over S.

18

hypotheses generated by BSamp by Hpr. The size of Hyy is |H|'°8™, where ¢ =
1/(27?%). Following the well-known analysis of the Occam’s razor principle [BEHWS8T]
we get that the probability that the final hypothesis is consistent with a random sample
of size m but has error larger than € is smaller than |Hps|(1— €)™ = |H |18 (1 —)™,
This quantity decreases rapidly with m. In particular, selecting m large enough that
m > (1/€)(log(1/8) + (1/2v%)log mlog |H|), guarantees that the hypothesis will have
error smaller than € with probability larger than 1 — §.

Although this simple analysis gives the correct orders of magnitude, it is incomplete
in that it depends on the size of H. In many cases this size is very large, moreover,
often H is infinite or even uncountable. These cases can be analyzed using the notion of
VC-dimension. However, Schapire [Sch90], suggested the following elegant proof that
is based only on the assumption that the size of the sample used by WeakLearn is
uniformly bounded. Although the final hypothesis is guaranteed to be consistent with
the whole sample, which is of size m, the number of examples from the sample that
are ever used by WeakLearn is O(logm). In other words, for large m only a small
fraction of the training examples are ever used by WeakLearn!

This small subset of 5 ordered in the way which they were generated by FiltEX
can be seen as a representation of the final hypothesis, hps. For the sake of analysis we
can imagine replacing Bg,,, by the following version, which has the same external
functionality. Instead of saving the hypotheses generated by WeakLearn, the boost-
ing algorithm saves the sets of examples that were returned by FiltEX when it was
called by WeakLearn. Later, when the value of hps(2) has to be calculated on some
new example z, WeakLearn is rerun. The saved sequences of examples are used by
WeakLearn to regenerate the weak hypotheses:'® then using these weak hypotheses,
har(z) is reconstructed. Representing hypotheses by means of a subset of the training
examples has been further studied by Littlestone, Warmuth and Floyd [LW86, FW93].

We now use prove a bound on the size of the sample that Bg,, ., has to use in
order to guarantee that the final hypothesis has error smaller than e¢. In the proof of
this theorem we use a technique invented by Littlestone and Warmuth [LW86] in the
above mentioned work which appears as Appendix A in [FW93].

Theorem 3.2 Let WeakLearn be a deterministic learning algorithm that generates,
with probability A > 0 over the random training examples with which it is trained, a
deterministic hypothesis whose error is smaller than 1/2 — v, for some v > 0. Assume
the number of training examples required to achieve this is uniformly bounded by my.
Then the hypothesis hyy generated by BSamp has the following property.

For any e, 6 >0, if BSamp uses a sample of size at least m, where

2
m> (1n3+@ (I—HmH)) :
€ 0 2 ~
then the probability that hys has error larger than € is smaller than 6. Here the proba-
bility 1s defined over the random choice of the sample S and over the internal random

coin flips in BSampf

10Note that this analysis is valid only when WeakLearn is deterministic. In Section 3.4 we show how to
analyze the non-deterministic case.

19

Proof: We are interested in bounding the probability of the set of samples and internal
coin flips of BSamp that generate a hypothesis that has error larger than e. We do
that by covering this set by two disjoint sets. The first set is the set of samples and
coin flips that cause Bg,,,,, to generate a hypothesis that is consistent with the sample
and yet has error larger than e. The second is the set of samples and coin flips that
cause Bg, ., to generate a hypothesis that is inconsistent with the sample. The first
and second parts of the proof bound the probabilities of these two sets respectively.

Part 1: We want to show that there is only a small probability that a random
sequence of training examples S = ((21,01),...,(Zm,n)) labeled according to ¢ € C,
can cause BSamp to generate a hypothesis that is consistent with 5 but has error
larger than e.

We first sketch the argument. We consider the following mapping of arbitrary
sequences of kmg labeled examples into hypotheses. The sequence is partitioned into k
blocks of length myq, each block is fed into WeakLearn. Using this block WeakLearn
generates a hypothesis.!! Finally, these k& hypotheses are combined by a majority vote
to generate a single hypothesis. We define two properties on sequences chosen out of
S that are based on the hypothesis to which these sequences are mapped. The first
property is that the hypothesis is consistent with all the examples in 5; the second
property is that the hypothesis has error larger than € with respect to the distribution
D and the underlying concept. We call sequences that have both properties “bad”
sequences. We show that the probability of a sample 5 from which a bad sequence
can be chosen is very small. However, if by using some sequence of coin flips, BSamp
can generate a consistent hypothesis that has a large error, then there exists a way
of choosing a bad sequence out of 5, which means that the probability of BSamp
generating such a hypothesis is small.

To bound the probability of samples 5 from which a bad sequence can be chosen,
one can view the elements of S that are not in the sequence as random test points on
which the hypothesis is tested. As most of the points in S are not in the sequence, it
is very unlikely that the hypothesis is consistent with all these examples and yet has a
large probability of making an error. This observation, together with the fact that the
total number of sequences of kmg elements from 5 is not too large, gives us the proof
of this part of the theorem.

We now give the formal proof, which is an adaptation of a technique used by War-
muth and Littlestone in [LW86]. Fix any concept ¢ € C. Let S = ((z1,041), ..., (Zm, L))
be the sequence of randomly drawn training examples returned by EX in step 1 of a
specific run of Bg,,,,, such that for all 4, [; = c(z;). Let 8" = ((xe,, ley)y ooy (eys lty))
denote a sequence of examples chosen out of 5.

Let T be the collection of all m? sequences of length d = kmg of integers in {1...m}.
For any sequence of examples S = ((21,01),...,(Zm,l)) and for any 7" € 7 we denote
(e, 0e,)s ooy (22,5 le,)) by ST. We denote the hypothesis to which this sequence is
mapped by the mapping defined above by has(S7).

Fixing T, let Ur be the set of all sequences of examples § such that the hypothesis
har(S7) has error larger than e. Recall that the error of hys is the probability, with
respect to the distribution D, of the symmetric difference between hps and c. Let Cp
be the set of all sequences S such that hps(57) is consistent with all the examples
in 5. Observe that each run of BSamp in which it generates a consistent hypothesis

Hwe assume that WeakLearn is deterministic and returns a hypothesis for any sequence of my examples.

20

corresponds to a sequence of indices T" such that C'r contains the training set 5 that was
used by the algorithm. If BSamp has non-zero probability of generating a consistent
hypothesis that has a large error when using the sample 5, then there must exist some
T € 7 such that § € Cr 0 Ur. We can thus upper bound the probability of failure
over the random choice of 5, by requiring that

Y PMCrnUr)<6/2.

TeT
The choice of the hypothesis has({(2+,,,), ..., (2, l:,))) is only a function of the d
elements of S5. If 5 € Uy, the hypothesis has probability at least 1 — ¢ of making
a mistake on any of the remaining m — d elements of 5 which are chosen at random,
independently of the elements in 5% and of the fact that S € Uzp. Thus the probability
that §isin C7, given that it is in Uz, is at most (1—¢)™~¢. Multiplying this probability
by the size of 7 we get

mi(l—em 1 <§/2. (15)

By substituting d = kmg we find that it is sufficient to require that

]
mkmo(l _ €)m—km0 S 5 ,

which can be translated to the following stronger requirement on m:

1 2
m> = (111 3 + Emo(Inm + 6)) .

€
We now use 1/(27?)In(m/2) as a choice for k, the number of weak hypotheses that are
combined by WeakLearn. Corollary 2.3 shows that this choice obeys the inequality
of line 2 in BSamp' We thus get that it is sufficient to require that

m > % (ln(Q/é)—l—mo%(lnm—l—G)) .

As the statement of the theorem places a slightly stronger requirement on the minimal
value of m, we get that if BSamp generates a consistent hypothesis than this hypothesis
has error smaller than € with probability at least 1 — §/2.

Part 2: We now bound the probability that BSamp generates a hypothesis that
is not consistent with the sample. From Theorem 3.1 we know that if all of the k
hypotheses generated by WeakLearn have error smaller than ¢y with respect to the
corresponding weightings of the sample, then the final hypothesis is consistent with
the whole sample. It thus remains to be shown that for any sample 5, the probability,
over the random choice made in BSamp that any of the k& hypotheses generated by
WeakLearn has error larger than ¢y is smaller than 6/2k.

Note that each time a hypothesis is returned from WeakLearn its error on the
weighted sample is checked, and it is rejected if the error is too large. Thus the only
case in which a hypothesis used by BSamp has an error larger than ¢y is when all
of the iterations of statement 3.a fail to generate a hypothesis with small error. As
the probability that any single call to WeakLearn generates a good hypothesis is at
least A, the probability that all of the (1/A)In(2k/68) runs of WeakLearn performed
in statement 3.a fail to generate a good hypothesis is at most

0
_ @/ m(zk/s) o 0
(1=2X) < 37

21

Thus the probability that any of the k& hypotheses used is not good is at most 6 /2. |

Theorem 3.2 gives a uniform upper bound on the sample complexity of BSamp'
The bound is given in terms of an implicit inequality on m, which cannot be written
as an exact explicit bound. The following corollary gives an explicit upper bound on
the sample complexity needed for boosting using BSamp'

Corollary 3.3 Let WeakLearn be a deterministic learning algorithm that generates,
with probability A > 0 over the random training examples with which it is trained, a
deterministic hypothesis whose error is smaller than 1/2 — v, for some v > 0. Assume
the number of training examples required to achieve this is uniformly bounded by my.
Then, given any €, 6 > 0, ifBSamp 15 required to generate a hypothesis that is consistent
with a sample of size

2

2
m > max{208, —In —, 16m—g(ln —)2} ,
e 0 ey

then with probability larger than 1 — 6, the hypothesis output by has error

BSamp
smaller than e.

Proof: We want to find m that will satisfy:

1(2 1 1\?
m> 2t 1n_+@<%) .
€ 0 2 ~
It suffices if m is larger than the maximum of twice each of the two terms in the right
hand side. From the first term we get m > %ln %. To bound m with respect to the
second term, we observe that, in general, in order to satisfy m > a(lnm+ 1)? it suffices

to choose m = 16a(ln a)?, if @ > 5. Tt thus suffices if m > 16a(lna)? = 16+ 5 * (In 5)? ,
or if m > 208. 1

We now discuss the time and space complexity of BSamp' One easily observes that
the total number of times that WeakLearn is called is

k. 2k Inm 1

On the other hand, statements 3.a.ii, 3.b, 3.c and 3.d in Figure 3, that test and
update the weights associated with the sample, each take O(m) time to execute. It
is thus clear that for large values of m, the time complexity of Bg, 1, is dominated
by the time for manipulating the sample and not by the time taken by WeakLearn.
This gives the Bg,,p, a time complexity of O((km/X)In(k/6)).

The space complexity of BSamp is dominated by the storage of the sample. The
sample size is, ignoring log factors, 0(1/6) (Corollary 3.3), while the storage of the
hypotheses generated by WeakLearn is O(k) = O(1/4% log1/¢). In the next section
we present a different boosting algorithm whose space complexity is O(log 1/¢) rather

than O(1/¢).

3.3 Boosting Using filtering

In the previous section we have developed one way of applying the optimal weightor
strategy for the majority-vote game to the problem of boosting a weak learner. While

22

the complexity bounds for this method are reasonably good, considerable improvement
is possible in the space complexity. The space complexity of BSamp is dominated by
the storage of the training examples. In some applications the training set is in the
memory anyway and this cost is taken for granted. However, in other cases (such as
on-line learning), storing all the training examples in memory might be very expensive.
Recall that in order to find a hypothesis with error smaller than ¢, only O(log(1/¢))
out of the O(1/¢(log(1/€))?) training examples in the sample are ever used by the weak
learning algorithm. In this section we present algorithms that select the examples used
by WeakLearn in an on-line fashion from the sequence of examples supplied by EX.
This avoids storing many examples in memory and decreases the space complexity
to O(log(1/¢)). Selecting examples directly out of the input stream is the basis of
Schapire’s boosting algorithm [Sch90]. Schapire used the term “filtering” to describe
this process. The selection is viewed as a “filter” that lies between the source of
examples, EX, and the weak learning algorithm. This filter observes each example
generated by EX and either rejects it and throws it away, or accepts it and passes it
on to WeakLearn.

The description of the algorithm is given in Figure 4. The overall structure of the
algorithm is very similar to that of BSamp' The boosting algorithm generates k weak
hypotheses by calling WeakLearn k times, each time presenting it with a different
distribution over the training examples. However, while in Bg, ., the examples are
drawn from a set of examples that is fixed, once and for all, at the beginning of the
process, in Bpj)y new examples are continually drawn from the sample space by calling
EX. Each time a new example is drawn, its weight is calculated, and a stochastic
decision is made whether to accept or reject the example, such that the probability

7

of acceptance is proportional to the weight. The proportionality constant, 1/al .,

is chosen so as to maximize the probability of accepting a random example without
violating the condition that the probability of acceptance should be in the range [0, 1].

The analysis of By;j corresponds to playing the majority-vote game directly on
the sample space, X, and the input distribution D, and not on the uniform distribution
over a sample, as is the case with BSamp' This simplifies the analysis with respect
to the analysis of BSamp in that there is no gap between the expected error on the
training set and the expected error on a random example. On the other hand, the
analysis becomes more involved as a result of the following potential problem. It might
happen that during some iterations of statement (2) a large fraction of the examples
generated by EX are rejected. As a result, the number of examples that have to be
filtered in order to generate the training examples required by WeakLearn becomes
prohibitively large. Luckily, as we shall show, the accuracy of the hypotheses that are
generated by WeakLearn in such iterations has very little influence on the accuracy
of the final hypothesis, hps, that is the final result of By -

We use this property by defining an “abort” condition. This condition, defined
at the bottom of Figure 4, detects iterations in which the fraction of accepted exam-
ples is small. We refer to such an event as triggering the abort condition. When the
abort is triggered, it stops the execution of procedure FitEX and the run of proce-
dure WeakLearn that called it, and returns control to statement (2.b). A random
hypothesis is then put in place of the hypothesis that was supposed to be generated
by WeakLearn. The random hypothesis is simply an algorithm that for any z € X
generates a label in {0,1} by flipping a fair coin. The abort condition is defined as
a function of two counters, #accept and #reject that are incremented each time an

23

Algorithm By,
Input: EX ,WeakLearn, v, A ¢,
Output: A hypothesis hps, that has error smaller than ¢ with probability at least 1 — 4.

1. Find a (small) %k that satisfies

k
L . .
> (i)u/z — /212472 < &
i=[k/2]
(For example, k > 4/4%In(1/¢) suffices)
2. Repeat the following steps for ¢ =0...k—1,

setting #accept and #reject to zero before each iteration.

(a) Call Bp,|, referring it to FiltEX and WeakLearn.
If BRe does not abort it generates a hypothesis: /41,
whose error is smaller than 1/2— /2 with probability at least 1 — §/2k.

(b) If BRe) aborts, then define h;y; to be a hypothesis that always makes a
random prediction using a fair coin.

3. Return as the final hypothesis, hjs, the majority vote over hy,...,hk.
Subroutine FiltEX

Repeat the following command until an example is accepted or until the abort
condition is satisfied.

1. Call EX, and receive a labeled example (z,[).
2. If 2 =0 then accept the example and return, else continue to 3.
3. Set r to be the number of indices 1< j < i such that hj(z)=1{, and calculate
i (k-1 15| —r [E]—im14r : ;
a, = k (1/2+7/2) 2 (1/2_7/2) 2 ; a;naxz max &,
5] —r 0<r<i
4. choose a real number z uniformly at random from the range 0 <a < 1.

5. If 2 < ai/aﬁmx then accept the example, and return it as the result,
else reject it and jump to 1.

In each case, update #accept and #reject accordingly.
The abort condition:

by Oy

. 8%y O
#accept + #reject > —— _—
e(l—c¢)

max (#accept,4ln Se(1=c)

Figure 4: A description of the algorithm for boosting by filtering.

24

example, generated by EX is accepted or rejected respectively. Both counters are reset
to zero each time the index ¢ in statement (2) is incremented.

In order to analyze Algorithm Byyjy we need to go back to the analysis of the
underlying majority-vote game. In order to do that we introduce again some of the
notation used in Section 2 and define it in the context of our new problem.

Let X be the sample space over which a probability distribution D is defined. Define
{X§, Xi,..., X!} to be a partition of X into 7 + 1 sets where X! consists of that set
of the sample space that is labeled correctly by r out of the first 7 hypotheses. Define
the following quantities related to this partition (a complete notation table appears in
Appendix A.3):

Mi=X!n X;:H the subset of X! that is correctly labeled by the i 4 1st hypothesis

¢, = Pr(X])

rl = 1;,;((]\;5)) the probability of a random example to be correctly labeled by has
given that it is in X!
t; = j«:o qlal The probability of accepting a random example during

the construction of hiyy is t;/al ..

We start our analysis by quantifying the reliability of the abort condition. We
say that the triggering of the abort condition is justified if t; < 2¢(1 — €)/(kvy). The
following lemma shows that most trigerring events are justified.

Lemma 3.4 Forall0 < i < k—1, the probability, over the distribution of the examples,
that an abort is triggered during the generation of hiy1, given that t; > 2e(1 —€)/(ky),
is smaller than 6 /2k.

Proof: We start by recasting the abort condition in a notation that is more convenient
for the analysis. Let n = #accept 4 #reject and m = #accept. We define the
constants ¢ = 2¢e(1—¢) / kyal,,. and ng = (8/¢)In(16k/cd). Using this notation we see
that an abort occurs after testing the nth example if and only if n > ng and m < en/2.
We use ¢ = t;/a’___ to denote the probability that Filt EX accepts a random example
generated by EX. Thus the claim that we want to prove is that if ¢ > ¢ then the
probability of an abort (during any one of the k iterations) is smaller than ¢ /2k. This
probability can be written as a sum of the probabilities of aborting after each example
after example number ng. We can bound the probability of aborting after the nth
example using Chernoff bounds as follows:

Pr(m < en/2) < e”/®
Summing this probability over all possible values of n we get that

—cng /8 8 §
€ e—cno/S < —

—cn/8 _
Pr(abort occurs after n > ng examples) < Z e . C/S 57

n=ng

which proves the claim. |

In order for the algorithm B¢ to work successfully, we need the reliability of
WeakLearn to be high. However, as noted by Haussler et. al. [HKLW91], it is easy to

25

boost the reliability of a learning algorithm. We give the performance of one possible
reliability-boosting algorithm, By o} in the following lemma. The proof of the lemma
and the description of the algorithm are given in Appendix B.

Lemma 3.5 Assume WeakLearn is a learning algorithm that generates hypotheses
whose error is smaller than 1/2 —~ with probability at least X > 0, using mo examples.
Then, for any 6 > 0, Algorithm Bp), will generate hypotheses whose error is smaller
than 1/2 — v /2 with probability 1 — 6. Furthermore, the number of examples required
by algorithm Bpq is at most

8 2 1\, mg, 2
= (4l —) + 22w
72<nn5+n5A)+ PR

We now give the two main theorems regarding Bysji. The first theorem proves the
correctness of the algorithm and the second proves a bound on the number of training
examples required by the algorithm.

Theorem 3.6 Let WeakLearn be a learning algorithm that, for any distribution over
the sample space X and any ¢ € C, generates a hypothesis whose error is smaller than
1/2 — ~ with probability A for some v, A > 0. Then, for any 6,¢ > 0, the algorithm
Bpij, given A,7v,¢€ and é, generates a hypothesis whose error is smaller than e with
probability at least 1 — 6.

The proof of this theorem is based on the potential function, 3¢, defined in Section 2.
In order to analyze the behavior of the average potential on aborted iterations we use
the following refinement of Lemma 2.2. Recall that in the Majority vote game the
chooser is required to choose sets whose weight is larger than some constant larger
than 1/2, here we denote this constant by 1/2 + 4’. The weightor assigns weights to
sets according to 7’. Suppose that the actual weight of the set that the chooser chooses
on iteration ¢ is 4;. Lemma 2.2 guarantees that if the chooser makes a legal choice,
i.e., if 4; > 7/, then the average potential does not increase. The following lemma gives
a more refined statement, which expresses the change in the average potential as a
function of the difference 7' — 4,.

Lemma 3.7 Suppose that the weightor in the majority vote game assigns weights ac-
cording to y', and that 4; = Y, _o W(M}). Then the increase in the average potential,
where 3. is defined according to v', is

i+1 i i
Soat T =) a3) g
r=0 r=0 r=0

Proof: Recall Equation (9) from the proof of Lemma 2.2:

1+1

POV ARED DA (TR AR AT B SR AL BUSAC S R P
r=0 r=0 r=0 r=0

From the definition of ¥;, we get, following the same line of argument as in kEqua-
tions (10) to (13) that

Yol (BE =B = (1244 > qi (81 - 57 (16)
r=0

r=0

26

Combining Equations (9) and (16) we get:

1+1 7 7
AT = e+ (12490) (83 - 571
r=0 r=0 r=0

=D a8t + (1249 (BE - BY) + (v =) D (BT =)
r=0

r=0 r=0
=S [(1/24 NEH (/2= 98 + (- X G BT - 8E)
r=0 r=0

Using Equation (5) for the first term and Equation (7) for the second term we find
that

i+1 7 7
PIAR ASED DULSNCEEA) SIS
r=0 r=0 r=0

which is the statement of the lemma. |

Proof of Theorem 3.6 From Lemma 3.4 we know that the probability that any
of the times the abort condition has been triggered is unjustified is smaller than ¢/2.
On the other hand, the properties of Algorithm By, given in Lemma 3.5, guarantee
that for each iteration, 0 < i < k—1, the probability that the error of k; is larger than
1/2 — /2 is smaller than 6/2k. Combining these claims we get that with probability
at least 1 — ¢ all the hypotheses have error smaller than 1/2 — 4/2 and all the times
the abort condition is triggered are justified. We shall now show that in this case the
error of hps is smaller than e.

In applying Lemma 3.7 to our analysis, we choose 7’ to be v/2. It is easy to check
that the probability of any set of examples A according to the filtered distribution gen-
erated by FiltEX is equal to the weight assigned to A by the weighting scheme defined
in Equation 3 where 4’ replaces 7. We equate the set chosen by the chooser with the
set of instances on which h;(2) = ¢(z). Under this correspondence, the probability that
hi(z) is correct, when measured with respect to the filtered distribution, corresponds
to the weight of the set chosen by the chooser.

Consider first the iterations 1 < ¢ < k in which the abort condition is not triggered,
i.e. the hypothesis h; is successfully generated and has error smaller than 1/2 —4'. In
this case we have that 4; > 4’ and thus Lemma 3.7 implies that the average potential
can only decrease.

Next consider the aborted iterations. The error of a random coin flip with respect
to any distribution over the examples, is, by definition, one half. Thus 4; = 1/2 and
we get from Lemma 3.7 that in the aborted iterations the average potential increases
by at most ' Y _g ¢ial = vt;/2. As we assume all the aborts are justified, we know
that ¢; < 2=,

Combining the aborted and non-aborted iterations, we find that the total potential
increase in all k iterations is at most ¢(1 — ¢). We now follow the same argument as in
the proof of Theorem 2.1. As the number of iterations, k, is chosen so that 35 < €2,
we get that

k
Pr(hn(e) # ca) = 3 kB <+ el—) <@ 4el—e)=c,

r=0

27

where the probability is taken with respect to both the random choice of z according
to D, and the random coin flips of the dummy weak hypotheses. |

Theorem 3.8 The number of training examples required by By is smaller than

4y/2e1/12 |32y 16k2~ 33 1\%/? 8In1/e
= max | mpg,41n < —(In- max | mp, 121n
V3r el —¢) de €y? € yde
(17)
where k is the number of iterations as chosen in line 1 of By and the inequality is
obtained by using the suggested choice of k. The variable mg denotes the number of

exzamples for generating a weak hypothesis with reliability 1—6/2k by BR and is equal

to:
mo, 4k 8 4k 2k
mpR = Tln7+ -z (111111 5 —I—lna) .
As discussed above the factor a!_ . is chosen so that the probability of accepting

a random example is maximized without distorting the simulated distribution. As
the value of o}, ,. plays a critical role in the proof of the Theorem 3.8. we start by
presenting a tight upper bound on this value.

Lemma 3.9 For all iterations 0 <1 < k —2 of Bpiit

al < #61/12
max 3r(k—1i—1)

The proof is given in Appendix D.

Proof of Theorem 3.8 The number of examples that are required by By, to
generate a hypothesis that has error smaller than 1/2 — v /2 with probability larger
than 1 — 6/2k, denoted mpg, is easily bounded using Lemma 3.5. The abort condition
guarantees that the number of examples that are tested by FiltEX during iteration ¢

k’yamax A1 16k2’y
7(1_€)max mpg,41In 5 .

Thus the total number of examples is bounded by

1s at most

16k2y
41 . 1
max(mR, n—) =0 ZZ; ! ax (18)
Using Lemma 3.9 for 0 < ¢ < k — 2 and observing that a®~1 = 1 we can bound the

sum by

k=1 k=1

, gel/6 1 [8el/6

¢ < — 4+ 1] < 2VEk . 19
2 Qnax S 3 (221 7 +) 3 VE (19)

Where the last inequality is true because

Z_:T<1-|-/k l—dw_Q\/—l—l

28

b

Combining 18 and 19 we get the equality in 17 and plugging in the choice k = %ln%

we get the inequality. |

We conclude this section by briefly discussing the time and space complexity of
Bp;j- Assuming a uniform bound on the running time of WeakLearn, it is clear that
the time complexity of B¢ is dominated by the time spent in line 3. of FItEX to
calculate the labels assigned to the prospective example by the currently available weak
hypotheses. As this time is proportional to the number of weak hypotheses available,
we get that the time complexity of By;j; is at most &k times the sample complexity
of By Similarly, assuming a uniform space complexity on WeakLearn and on the
size of the hypotheses that it generates, it is clear that the space complexity of By
is proportional to k, the number of hypotheses that need to be stored in memory.

3.4 Randomized learning algorithms and randomized hy-
potheses

In our discussion so far, we have concentrated on boosting deterministic weak learning
algorithms that generate deterministic hypotheses. In this section we show that our
results transfer, with little or no change, to the more general case in which both the
weak learning algorithm and its hypotheses are allowed to be randomized, i.e., make
use of flipping random coins.

Note that the data to the learning algorithm and the hypothesis already has a
large degree of randomness, as it consists of examples that are chosen at random. We
now show a simple transformation that translates randomized learning algorithms into
deterministic learning algorithms on a different sample space.

For our analysis we use the convention that the random bits that are used by a
randomized algorithm are given to the algorithm as input when it is called. More
specifically, we assume the algorithm is given a real valued random number, r, chosen
uniformly at random from [0, 1] whose binary expansion is used as an infinite source of
random bits.'?> We shall take special care that each bit in the binary expansion is used
at most once during the run of the algorithm. Thus any random bit used at any point
in the algorithm is independent of any other bit. For that reason the distribution of
the outcome of the algorithm is equivalent to the distribution generated if each random
bit is chosen by an independent coin flip. The transformation we present is only an
analytical tool. As we shall see, the results of the analysis is that By can be applied
to the randomized case without any change. The only change that is required for using
BSamp in the randomized case is that the sample size has to be slightly increased.

Assume A is a randomized weak learning algorithm that generates randomized
hypotheses. Assume A can learn the concept class C for any distribution D on the
sample space X. We now define a mapping u that maps X,C, A and D to X', C’, A’/
and D', where A’ is a deterministic learning algorithm that generates deterministic
hypotheses. The sample space X' consists of pairs of the form (a,r), where z € X and
r € [0,1). The probability measure D’ is the measure generated by the cross product
between the distribution D and the uniform distribution on [0, 1). Each concept ¢ € C
is mapped to a concept ¢’ € C’ such that for all (z,r), ¢/((z,r)) = ¢(z). Finally, the
algorithm A’, receiving the training examples {({x1,71),11), .-, ({Xm,Tm),lm)}, Tuns

12We assume some convention is used for selecting one of the binary expansions when the expansion is not
unique.

29

the algorithm A on the sample {(21,01),...,(Zm,ln)}, together with the number rq,
that is used by A as its source of random bits. The hypothesis h, generated by A, is
transformed in a similar way: h’, upon receiving an instance (x,r) as input, calls h to
label z, giving it r as its source of random bits.

Note that an infinite sequence of bits can be partitioned into an infinite number of
infinite subsequences. For concreteness, we define the nth subsequence of r to consist
of the bits whose indices can be written as (2i — 1)2"~! for some positive integer i. We
denote this subsequence by r,. Note that if r is chosen uniformly at random then all
of its subsequences are also uniformly distributed.

Using these definitions we can now show how boosting the randomized learning
algorithm A can be viewed as boosting the deterministic algorithm A’ over the larger
sample space. Transforming the algorithm for boosting by filtering, Byyj¢, is simpler.
The change takes place in the procedure FitEX. In each iteration the procedure
receives an example (z,7) € X' chosen at random according to D’. It then separates
x and r, and maps r into rq1,...,741, which are independent random bit sequences.
Sequences 1 to ¢ are used for calculating hy(z,71), ..., hi(2,r;). Sequence number 7+ 1
is returned to WeakLearn, in this case the algorithm A, for use as its source of random
bits. Using this transformation the proofs of Theorems 3.6 and 3.8 can be used without
change, and thus Bp;)y works equally well for randomized and deterministic learning
algorithms.

The analysis of the algorithm for boosting by sampling, Bg,,,y,» is somewhat more
complicated. That is because the same examples are repeatedly fed into A. Since the
examples include the source of random bits, this might induce undesired dependencies
between random bits used in different runs of A. To avoid this problem, we assume that
an additional integer parameter, which we denote ¢, is supplied to A. This parameter
directs algorithm A to use, as it source of random bits, the gth subsequence of the
random sequence with which it is supplied. The parameter ¢ is different each time A is
called, and thus the random bits used by A are guaranteed to be independent. However,
this addition changes somewhat the proof of Theorem 3.2, forcing us to increase the

size of the sample that is used by as is summarized in the following theorem.

BS:&me7

Theorem 3.10 Let WeakLearn be a randomized learning algorithm that generates,
with probability A > 0 over its internal randomization and the random choice of the
training examples, a randomized hypothesis whose error is smaller than 1/2 — ~, for
some v > 0. Assume the number of training examples required to achieve this is

uniformly bounded by mq. Suppose that m, the size of the sample used by BSampf
obeys the following inequality:
2 9 mo+Inl+Inln L
m > max{208, —1In 5 16a(ln a)z} , where a= ° A > 78 (20)
€ 7
Then with probability at least 1 — 6, the hypothesis hy; generated by BSamp has error

smaller than e.

Notice that this bound is similar to the one given in Corollary 3.3, but there is a depen-
dence of the sample size on A which does not exist when the algorithm is deterministic.
Proof: The essential difference from the proof of Theorem 3.2 is that the number of
possible hypotheses that can be generated from the sample is larger. In Theorem 3.2
this number is equal to the number of subsequences of size d that can be chosen from

30

a sequence of size m, i.e. m?. In our case it is the number of subsequences times the
number of combinations of values of the parameter ¢ that could have been used in the
generation of the k good hypotheses. Assume that ¢ = ir + 1 where ¢ = 0...k — 1 is
the number of hypotheses that have been generated so far, [= 1...r is the counter of
the attempts to generate a good ith hypothesis and r = (1/A)In(2k/¢) (These indices
are used in statement 3 and 3.a in Figure 3). Using this convention it is clear that each
one of the hypotheses can be chosen using one of r values, and the total number of
combinations of values of ¢ is #*. Thus the basic inequality that replaces inequality 15
is

rFmd(1— et < §/2 . (21)

And solving for m that satisfies this inequality we get the following inequality

1 2 mo /Inm+1\%2 Inm 1 1
mzz(lng+7< 5) + TE <lnx+lnln%+lnlnlnm))

Using the same argument that was used to prove Corollary 3.3 we get the statement
of the theorem. |

3.5 The resources needed for polynomial PAC learning

So far in this paper we have considered learning algorithms that are designed to work
for a single fixed concept class defined over a single fixed sample space. However, most
learning algorithms can be used for a family of concept classes, and one is then inter-
ested in the way the performance of the learning algorithm depends on the complexity
of the concept class. Valiant [Val84] presented a framework, called the PAC'? learning
framework, in which such quantification can be done. This framework is one of the
most studied frameworks in computational learning theory. In this section we show
the implications of our results in this framework.

We start by presenting some notation following Haussler et. al. [HKLW91]. Assume
that the sample space is a union of sample spaces of increasing complexity: X =
U2, X,. Similarly assume that the concept class that maps points in X,, to {0, 1} is
defined as a union of concept classes of increasing complexity: C, = UZ,C,, ;. The
indices n and s usually denote the length of the description of an instance and a concept
in some encoding scheme for X and for C respectively.

We say that a concept class C is learnable, or strongly learnable, if there exists a
learning algorithm A, and polynomials pi(-,-,-,), p2(+,-,-,-) such that:

e For any n,s and any €,6 > 0, the algorithm A, given n,s,e,6 and access to
an example oracle EX, can learn any concept ¢ € C,, , with respect to any
distribution D on X,,, and generate a hypothesis that has error smaller than €
with probability larger than 1 — 6.

e The sample complexity of A, i.e. the number of calls that A makes to EX, is
smaller than py(n,s,1/€,1/6).
e The running time of A is polynomial in py(n,s,1/e,1/6).

Kearns and Valiant [KV88, KV94] introduced a weaker form of learnability in which
the error cannot necessarily be made arbitrarily small. A concept class C is weakly

ISPAC learning stands for Probably Approximately Correct learning.

31

learnable if there exists a learning algorithm A, and polynomials py(-,-,-), p2(+,-,-) and
ps(-,-) such that:

e For any n,s and any 6 > 0, the algorithm A, given n, s, 6 and access to an example
oracle EX, can learn any concept ¢ € C,, ; with respect to any distribution D on
X, and generate a hypothesis that has error smaller than 1/2 — 1/ps(n, s) with
probability larger than 1 — 6.

e The sample complexity of A, i.e. the number of calls that A makes to EX, is
smaller than py(n,s,1/6).

e The running time of A is polynomial in py(n,s,1/6).

In other words, a weak learning algorithm produces a prediction rule that performs
just slightly better than random guessing.

Schapire [Sch90] has shown that the notions of weak and strong PAC learning are
equivalent. Moreover, the boosting algorithm he invented provides an effective way for
translating any weak learning algorithm into a strong learning algorithm. The boosting
algorithm Byyj)¢ presented in this paper provides a more efficient translation of weak
learning algorithms to strong learning algorithms. A simple application of Theorem 3.8
gives the following upper bound on the resources required for PAC learning.

Theorem 3.11 If C is a weakly PAC learnable concept class, parameterized by n and
s in the standard way [HKLW91], then there exists a PAC learning algorithm for C
that learns with accuracy ¢ and reliability 6 and:

o requires a sample of size
(1/€)(log1/€)*/*(loglog 1/€ + log 1/6)p1(n, s),
o halts in time
(1/e)(log 1/€)*/*(loglog 1/e + log 1/8)ps(n, 5),
o uses space (log1/€)(loglog1/e +log1/8)ps(n,s), and
o outputs hypotheses of size (log1/€)pa(n,s) evaluatable in time (log1/e)ps(n,s)

for some polynomials py, pa, p3, pa and ps.

Proof: The PAC learning algorithm that we refer to is algorithm Bp;); applied to
the given weak PAC learning algorithm. As n and s are passed without change to the
weak learning algorithm, the dependence on n and s remains polynomial. Fixing A
and v, Theorem 3.8 gives the dependence of the sample complexity on ¢ and 4. The
time and space complexity of the boosted algorithm, as well as the size of the final
hypothesis follow from the discussion of the resources required by By, which follows

Theorem 3.8. |

We now compare this theorem to Theorem 4 in [Sch90]. The statement there is that
the dependence of the sample and time complexity on € is O(1/e poly(1/¢)), and that
the other dependencies on 1/€ are poly-logarithmic. Our theorem tightens these bounds
by giving the explicit powers in the polynomials over log(1/¢) and log(1/é). Moreover,
our more detailed bound, given in Theorem 3.8, shows explicitly the dependence on
the parameters v and mg, which are hidden in Schapire’s analysis. In the next section
we show that some of these upper bounds are optimal.

32

3.6 Relations to other bounds

The bounds given in Theorems 3.8 and 3.11 are currently the best known bounds on
the resources required for polynomial PAC learning of an arbitrary PAC learnable class.
In this section we relate our results to known lower bounds, and indicate where further
improvement might be possible.

Theorem 3.11 shows that for any learnable concept class there exists a learning
algorithm in R P for which the dependence of the sample size on the required accuracy,
when all other parameters are fixed, is O(1/¢(log1/€)*/?). A general lower bound of
Q(1/€) is given in [BEHWS89] for learning any “non-trivial” concept class. This lower
bound holds without regard to computational constraints on the learning algorithm.
There exists a matching upper-bound, given in [HLWS88|[Theorem 5.1], which says
that, ignoring computational complexity, any concept class that can be learned using
a sample of size polynomial in 1/€ can also be learned using a sample of size O(1/¢)
(ignoring the dependence on other problem parameters). The truth might be either
that our upper bound can be reduced to match the lower bound, or that there exists
a better lower bound on the sample complexity of learning algorithms that are in
RP. However, an improved lower bound would have to either assume or imply that
RP # NP.

The number of weak hypotheses that are combined by our boosting algorithms is
O(1/9%In(1/€)). We now show that this dependence of the number of required weak
hypotheses on € and « is the best possible for any general boosting algorithm. A general
boosting algorithm is a learning algorithm that can improve the accuracy of any PAC
learning algorithm. As such, it cannot depend on any properties of the concept class.
Knowledge about the concept class may only be used by the weak learning algorithm.

A general boosting algorithm receives as input four positive real valued parameters:
€,7,6 and 6. Its goal is to generate a hypothesis h : X — {0,1} which is a close
approximation of a target concept ¢ : X — {0,1} from an unknown concept class
C with respect to the target distribution D. The boosting algorithm operates in &
iterations as follows. In iteration ¢ the boosting algorithm defines a distributions D;
over the instance space X. The examples oracle FiltEX selects random instances from
X according to the distribution D; and labels them according to ¢. The weak learning
algorithm, WeakLearn, which knows the concept class C, is given access to FiltEX,
and generates a hypothesis h; : X — {0, 1} such that Prp,(h;(2) # ¢(2)) < 1/2—5 with
probability at least 1 — ég. The boosting algorithm receives these k weak hypotheses.
In addition, it can receive m examples drawn according to the target distribution D.
Using this information, the boosting algorithm is required to generate a hypothesis A
such that Prp(h(z) # ¢(2)) < ¢ with probability at least 1 — 4.

We prove that the dependence of k on v and € is k = Q((1/9%)log(1/€)). The idea
of the proof is simple. Suppose that the weak hypotheses were stochastic rules such
that for each z € X, Pr(h;(z) = ¢(z)) = 1/2 + v independently of anything else. In
this case it is easy to show that the best way of combining the hypotheses is by a
majority vote and that the number of weak hypotheses required is Q((1/v%)log(1/¢)).
The technical caveat in this argument is that one could use the same weak hypothesis
several times and combine the outcomes to achieve the same small error. We thus need
to demonstrate the existence of deterministic weak hypotheses whose errors behave in
a way that is similar to independent random label noise.

For the sake of simplicity, we assume that the instance space X is the finite set of

33

integers {1,...,N}. We assume that N is large and define Fy to be a family of 2V
concept classes as follows. Let 7 € {0,1}" be the index of the concept class and denote
by 7(z) the value of bit number 2 in 7. We define the concept class C, to include the
following two concepts: cp(2) = r(2) and ¢j(z) = 1 — r(z). We further assume that
the distribution D is the uniform distribution over {1,..., N}.

We show that if k, the number of weak hypotheses, is significantly smaller than
the number required by our boosting algorithm for given values of € and 7, then there
exists some concept class in the family described above and a concept in that class,
such that the error of the final hypothesis generated by the boosting algorithm when
learning this concept is larger than e. This is stated more formally in the following
theorem

Theorem 3.12 Let €,v and § be positive real numbers and let k be an integer such

that
k

> (’j)(l/z (124) s e
i=[k/2]+1
Let B be a general boosting algorithm. Then there exists a concept class C, a concept
c € C and a weak learning algorithm WeakLearn for C such that the following holds
with probability at least 1 — 6 over the random choice of the instances and the internal
randomization of WeakLearn.

o WeakLearn returns hypotheses with whose errors are at most 1/2—~ with respect
to the corresponding distributions.

o If B calls WeakLearn at most k times then the error of the hypothesis generated
by B is at least «.

Using standard approximations of the tails of binomial distributions, one can show
that the lower bound on k given in the lemma implies that k& = Q((1/7?%)log(1/¢)).
Moreover, the expression for the number of weak hypotheses required by the boosting
algorithms By and BSamp has a similar binomial form (see statement 2 in Figure 3
and statement 1 in Figure 4). This means that the upper and lower bounds on k are
closely related even when ¢ and 7y are large.

Proof of the theorem

We show that for a sufficiently large N, one of the concept classes in Fpn satisfies
the statement of the theorem. We prove the existence of this concept class using a
probabilistic argument. Suppose that the concept class C, € Fpn is chosen randomly
by selecting 7 uniformly at random from {0,1}". After this selection has been made
c € C, is chosen randomly with equal odds to be either ¢{, or ¢j. We shall show that
the expected error of any boosting algorithm, with respect to this distribution over the
target concepts, is larger than e.

As each concept class includes only two concepts which disagree on each point
of the domain, the learning problem faced by the weak learner is trivial. The weak
learner can identify the concept after observing any single example. However, we
construct the hypotheses so that the boosting algorithm can gain as little information
as possible without violating the requirement on their performance with respect to
the corresponding distributions. We assume that the weak learning algorithm is not
limited in its computational power. In particular, by making many calls to FiltEX,
WeakLearn can approximate Prp,(2) to within any desired accuracy for all z € X.

34

Given the distribution D; and the parameters v and NV the weak learner selects the
hypothesis h; by choosing the set A;, on which h;(2) = ¢(z), in the following way. First,
the set A’ is defined to contain all the elements « € X for which Prp,(z) > N=2/3. On
the rest of the space, for each element in X — A!, we flip a random biased coin and
add it to AY with probability 1/24 v + N-Y12 We use 7' to denote v + N-Y12 The
set A; is defined to be AL U AY and the hypothesis h; is ¢(2) if 2 € A; and 1 — ¢(2)
otherwise.

We need to show that, when N is sufficiently large, this procedure generates a
hypothesis whose error, with respect to D;, is smaller than 1/2—~ with high probability.
Using the terminology of the majority-vote game, we call the probability with respect
to D; the weight of the set. As h;(2) = c(a) for all z € A, it suffices to show that
the weight of A is at least 1/2 + v of the weight of X — A’. The expected weight
of A” is (1/2 4+ ~")Prp,(X — A%). Tt thus remains to show that the actual weight of
A is, with high probability, close to the expected value. Observe that at most N2/3
elements can have sufficient weight to be included in A’. Thus there are between
N — N?/3 and N elements in X — A% and the weight of each element is at most N~2/3,
Thus the variance of the weight of AY is at most NY/2N=2/3 = N=1/6 = o(N~1/12), As
y'—y = N~Y12 it is easy to show, using standard bounds on the deviation of large sums
from their expected value, that the weight of A is larger than (1/24 v)Prp, (X — A%)
with probability approaching 1 as N — oo. This completes the proof that the weak
hypotheses that are generated by the weak learner are legitimate weak hypotheses.

We now lower bound the error of the prediction of ¢(z) that can be achieved by
the boosting algorithm. We show this lower bound by constructing the Bayes optimal
prediction rule for the specific weak learner described above. The optimal rule is divided
into three cases depending on the instance x. In the first case one of the k distributions
used during the boosting process assigns « a weight larger than N ~2/3
know that the corresponding hypothesis gives the correct label and we are done. As
observed above, the total number of elements of this type is kN2/3, and thus their total
probability (with respect to the uniform distribution which is the target distribution)
is at most AN /3, which approaches zero as N — oco. In the second case z is an
instance whose label has been observed in one of the examples accessed by B. We
denote this set of instances by M. In this case the label of z is the one observed in the
example. The probability of this event is at most |M|/N which also approaches zero
as N — oo. In the third case, which amounts to most of the probability, each of the
k hypotheses has been chosen, independently at random, to be ¢(z) with probability
1/24+" and 1 — ¢(x) with probability 1/2 —+’. We can use Bayes formula to calculate
the probability that ¢(2) = 1 given the values of the weak hypotheses. Denoting by
n(z) the number of hypotheses such that h;(z) = 1, and setting Z = X — M —J¥_, A,
we get

; in this case we

Pr(e(z)=1lz € Z and n(z) =n) =
Pr(n(z) =nlz € Z and ¢(z) = 1) Pr(c(z)
2o} Pr(n(z) = nle € Z and ¢(z) = 1) Pr(

=1)

. 22
c(x)=1) (22)
Here, the probabilities are measured with respect to the random choice of the example
x, the concept class C, € Fu, the concept ¢ € C, and the random choices made by

WeakLearn. The method by which the concept class C, and the concept ¢ € C, are
chosen implies that Pr(¢(2z) = 1) = 1/2. The method by which the elements in AY are

35

chosen imply that
Pr(e(z) =1z € Z and n(z) = n) =
5(1/2+ 7)1 (1/2 = 5)F ()
3(1/2+ 9@ (1/2 = 4/)k=nle) 4 5(1/2 = /)@ (1)2 4 oe=nle)
It is easy to see that this equation gives a value larger than 1/2 if and only if n(z) >
k/2. Thus the Bayes optimal decision rule when 2 € Z is to predict the value of

c(z) according to the majority of the weak hypotheses. ' The probability that this
prediction rule is incorrect is lower bounded by

Prp(Z) Pr(MAJ(hi(2),...,he(2)) # c(z))

k
> (1= |MI/N = kN7 Y (’j)(l/z—v')fu/zﬂ')’f—f

(23)

=|k/2]+1
k
> (1= |M|/N—kNT) Y (]?)(1/2 — 7= N7V (1245 4 N7
=|k/2]+1
N—oo ul k ; k—s
> (i)u/z—wu/zﬂ) g (21)
=|k/2]+1

As this is a lower bound on the probability of mistake of the Bayes rule, it is a lower
bound on the (expected) probability of mistake of the hypothesis generated by any
boosting algorithm. This, in turn, implies that for any boosting algorithm there exists
a choice of concept class C, and a concept ¢ € C, such that the probability of mistake
of the hypothesis generated by the boosting algorithm for this concept is at least as
large as the lower bound given in Equation 24. This, together with the assumption on
k stated in the statement of the Theorem, completes the proof. |

4 Extensions

4.1 Using boosting for distribution-specific learning

So far, we have followed the distribution-free paradigm in computational learning and
assumed that the learning algorithms that we attempt to boost have complexity bounds
that hold uniformly for all input distributions. In this section we show that By, our
second boosting algorithm, can boost learning algorithms whose accuracy is not uni-
formly bounded for all distributions. We will define a measure of discrepancy between
distributions and show that the accuracy of WeakLearn can be allowed to degrade as
the discrepancy increases between the filtered distribution that is fed into WeakLearn
and the distribution that governs the example oracle EX. We shall refer to the distri-
bution governing EX as the “target” distribution.

From Lemma 3.7 we know that the increase in the average potential in the ith
iteration is equal to

i1

SgtB = B+ (v —) D gial
r=0 r=0 r=0

YMIf p(x) = k/2 then the Bayes rule is undefined, for the sake of the lower bound on the error we assume
that the prediction made is always correct in this case.

36

where 4, is the difference between 1/2 and the error of h; with respect to the filtered
distribution in the ¢th iteration. We recall the notation defined in Section 3.3: t; =
Yor_o qial and re-write the last equation

i+1

ST BE =3B+ (v = Aot -
r=0 r=0

Recall that the probability of accepting a random example that is tested during the ith
iteration is ¢;/a!_ ... Thus, if the probability of accepting a random example during the
1th iteration is small, then the sensitivity of the final accuracy to the accuracy of the
tth hypothesis is small. We have already used this fact in the proof of Theorem 3.6.
There we used it to show that if the probability of accepting a random example is
small enough, then a random coin flip can be used instead of the weak hypothesis. In
this section we use the same property to relax the requirements on the accuracy of the
hypotheses generated by WeakLearn for distributions that are far from the target
distribution.

The following lemma shows how the requirements on the accuracy of the hypotheses
generated by WeakLearn can be relaxed, allowing the generation of hypotheses whose
error is larger than 1/2 — 4.

Lemma 4.1 Let 0 < v,¢ < 1/2 be the accuracy parameters supplied to Byyyy, and k
be the number of iterations chosen by By . Let t; denote S _oqial and let 1/2 —%;
denote the error of h; with respect to the filtered distribution in the ith iteration.

If, for each iteration 0 <1 < k — 1 we have

. el — 6))
;> 1-—> 25
Fi 2y (s (25)
then the error of hyy, the hypothesis output by By, with respect to the target distri-
bution, is smaller than ¢

Proof: From Lemma 3.7 we immediately get that the increase of the average potential
in each iteration is at most €(1 —€)/k. Thus the total increase in the average potential
in all k iterations is (1 — €). The rest of the proof follows the same line of argument
as the one used for the aborted iterations in the proof of Theorem 3.6. |

To illustrate the significance of this result, assume that WeakLearn generates a
hypothesis whose error is 1/2 — v when given examples from the target distribution.
Our goal is to achieve a higher degree of accuracy on the target distribution by making
use of the performance of WeakLearn on other distributions. As we know from
the main results of this paper, if WeakLearn is capable of generating a hypothesis
with error smaller than 1/2 — 5 for any distribution then boosting can achieve any
desired accuracy on the target distribution. However, using Lemma 4.1 boosting can
be used even in cases where the accuracy of the hypotheses generated by WeakLearn
decreases as the distributions supplied to it become more and more different from the
target distribution. The slower the decrease in accuracy, the higher the quality that
can be achieved by boosting.

We start by simplifying Equation (25). By choosing &k = (4/9?)In(1/e), we get an
upper bound on the error of h; as a function of v and ¢;:

76(1—6)) ‘

o>y (1
7”(At;1n(1/e€)

37

Different choices for v generate different lower bounds on 4; as a function of ¢;. An
illustration of these lower bounds is given in Figure 5.

Frequency of accepting

100 200 300 400 500 600 700 800 900 1000

a random example

Figure 5: The accuracy that can be achieved using boosting for a learner whose
accuracy depends on the distribution. The horizontal line denotes 1/¢, or the expected
number of examples that have to be filtered per accepted example. The origin denotes an
acceptance rate of 1, i.e. every example is accepted, which means that the weak learner is
observing the original distribution. The vertical axis denotes the error of the hypotheses.
Each sloped line denotes a requirement on the maximal error of the weak learner as a
function of the divergence from the target distribution. Each such bound guarantees a
different accuracy of the final hypothesis, which is described by the bold arrow on the error
axis.

In order to separate the requirements for WeakLearn from the particulars of our
boosting algorithm, we need to upper bound the value of t; using a measure of the
discrepancy between the target distribution and the filtered distribution. We shall
now define such a measure of discrepancy, show that this measure is closely related to
the Kullback-Leibler divergence, and give a stronger version of Theorem 3.6 based on
this measure.

Definition 1 Let P and Q be two distributions defined over the same space X and
o-algebra Y. The mazimal-ratio divergence between Q and P, denoted Dy (Q||P), is

defined to be
A
DM(QHP)iln(sup &) .
Aesx, o(4)>0 P(A)

38

We now lower bound the maximal ratio divergence using the well-known Kullback-
Leibler divergence.

Lemma 4.2 For any two distributions Q and P, defined on the same measure space,
Dy (Ql[P) > D (QIIP) -
Where Dicr, (Q||P) is the Kullback-Leibler divergence, which is defined as

Dt (QlIP) = Euco (m %) .

—

Proof: If Fg (ln %Ei;) > a then there exists a set A such that Q(A) > 0 and In % >

a, which implies that Dy (Q||P) > a. |

Note that there is no similar inequality relating the two measures of divergence in
the other way. That is because there might be a set A such that Q(A) is very small,
so that the contribution of this set to Dy, (Q||P) is negligible, but on the other hand
Q(A)/P(A) is extremely large.

Using these measures of divergence, we can lower-bound ¢; by functions of the
divergence between the target distribution and the ¢th filtered distribution:

]

Lemma 4.3 If D is the target distribution, and F; is the distribution generated by
FiltEX during the ith iteration, then

t; < e PuBllD) < o=Drr(BID)

Proof: The second inequality follows from Lemma 4.2. To prove the first inequality,
assume that Dy (F;||D) > a. Then there exists a set A € ¥ such that %"(% > ef,

Using the definition of the measure generated by filtering in Equation (3) we get
oo Lr=oDANX ey [Zi 3o DANKX]) [Zi 1
€ - , ' - =—.

The inequality holds because ! < 1 always.'> Here Z; = Y0, D(X})al = t;, from
which we get 1/t; > €%, which proves the lemma. |

We now combine the results of Lemmas 4.1, 4.2 and 4.3 to arrive at the following
stronger version of Theorem 3.6

Theorem 4.4 Fiz a target distribution D and real valued parameters v,€,6 > 0.
If WeakLearn is a learning algorithm that for any distribution P over the sample
space X and any ¢ € C, generales a hypothesis whose error, with respect to P, is

smaller than
1 6(1 — 6)7 eDKL(PHD)

5‘7(1‘m)

then, with probability at least 1—6, the algorithm By, given the parameters, generates
a hypothesis whose error, with respect to D, is smaller than e.

5Notice that a tighter bound can be proved using the bound on a! = maxp<i<r al given in Lemma 3.9.

However, here we avoid using this tighter bound because we want the bound to be independent of <.

39

Proof: The algorithm uses k = (4/7%)In(1/¢) as given in statement 1. of Algorithm
Byyt (Figure 4). From Lemma 4.1 we get that it is enough if the error in the 7th

iteration is smaller than
1 (e(l—e)y)
— =yl - —— .
2 4t;In(1/¢€)

—Dyr(DI|T)

Combining Lemmas 4.3 and 4.2, we get that ¢; < e , which proves the theo-

rem. |

Notice that Theorem 4.4 assumes that the weak learner is completely reliable, i.e.
that it has probability 1 of generating a hypothesis with the desired accuracy. The
algorithm can be used for less reliable weak learning algorithms, but there is a subtle
point that needs to be addressed in that case. The point is that the number of examples
required by By, in order to increase the reliability is Q(1/~?). Thus if the error of the
hypothesis has to be just very slightly smaller than 1/2, the number of examples that
are required to test if the hypothesis is good increases without bounds. To avoid this
problem the required error has to be set to a smaller value, thus making the detection of
a good hypothesis easier. We omit the details of this variant of the boosting algorithm.

4.2 Boosting multiple valued concepts

As was noted by Schapire [Sch91], the generalization of the equivalence between strong
and weak learning to concepts with more than two labels does not enjoy the same
tightness as the two label case. In the two label case an ability to predict correctly
with probability slightly better than that of random guessing is equivalent to strong
learning. In the j-label case the probability that a random guess is correct is equal
to 1/7, while the minimal requirement for weak learning to be equivalent to strong
learning is still to predict correctly with a probability slightly better than one-half. 16
As any j-valued decision rule can be replaced by j—1 binary decision rules of the type:
“is the label equal ¢”, the binary boosting algorithm can be used 7 — 1 times to generate
the desired hypothesis. However, it is possible to perform the boosting process in one
pass, generating a simple j-valued hypothesis and eliminating the dependence of the
complexity on j. The combination rule that is used is simply the j-valued plurality,
i.e. the strong hypothesis labels the input with the label given by the largest number
of weak hypotheses. The algorithm and its analysis are almost identical to the binary
case; the only difference is that the definition of the filtering factor is based on one more
parameter, denoted by t, that is the number of incorrect hypotheses whose output is
not equal to the incorrect label with the largest number of votes. For example, suppose
the labels are the ten digits. Assume the correct label for some example is “0” and
the incorrect label that got the largest number of votes is “9” (irrespective of whether
the number of votes “9” got is larger than the number of votes “0” got). Then ¢ is
the number of votes that the digits “1” to “8” got. The change in Formula (1) is that

16To realize this, consider a 3-label concept such that for any example there are only two possible labels
(over the whole concept class). In this case, using a random coin flip to choose one of the two possible labels
will give a correct answer half of the time, but the concept class might still be unlearnable [Sch91].

40

k is replaced by k — ¢:

0 if r <i— L
ol = (e 2)G+ L R el e R R I C)
0 if r > 254

It is interesting to note that the resources required are completely independent of j,
the number of possible labels. This is even true if j is different for different n and s,
or if 7 is infinite, even uncountable! However, the requirement of weak learning for
concepts with uncountable ranges is unreasonably hard. The hypothesis must generate
the ezact correct output for more than half the inputs (in probability). In this case the
result described in the next section might be more relevant.

4.3 Boosting real valued concepts

A modification of the boosting algorithm can be used for boosting learning algorithms
for concept classes whose range is a real number (for a review of algorithms for learning
real valued functions, see Chapter 5 in [Nat91]). This variant of the boosting algorithm
transforms learning algorithms that generate hypotheses whose expected error, with
respect to the input distribution, is small to algorithms that generate hypotheses whose
error is small for most of the input domain.

Assume C is a set of functions from R to R and WeakLearn is a learning algorithm
for C . Let p be any density function over R, and let (21, f(21)), (22, f(22)), ..., (xn, f(2n))
be a set of examples drawn independently at random according to p and labeled ac-
cording to some f € C. Then A, upon observing this sample, generates a hypothesis
function ¢ such that with probability larger than 1 — 6

+oo
|15~ g()ldptz) < d (27)
We shall sketch how the boosting algorithm can be used to generate a function A such
that with high probability

By (176) = hio)l > =) <.

Where P, is the probability according to the density p and 7,e > 0 are polynomial
fractions.

Using the Markov inequality and setting A =
that

d
1/2—~
1

Py (1) = glw)l > A) < 5 =7

We extend the notion of agreement between a concept and a hypothesis on an example z
to concepts defined on the reals by saying that f and g “A-agree” on z if | f(2)—g(2)| <
A. Using the extended definition of agreement we can say that WeakLearn is a weak-
learner for the concept class C . If we replace all the places in the boosting algorithm
in which it refers to “agree” or “correct” by corresponding references to “A-agree”
or “A-agrees with the true function”, we get a boosting algorithm for real valued
functions.

we get, from Equation (27),

41

Suppose, for simplicity, that we are using algorithm BSamp' Then the result of
running the boosting algorithm over the weak learning algorithm are k real valued
functions hq(2), ..., hg(z) such that for any point in the sample more than k/2 of the
functions are within A of the correct value. It is interesting to observe that the results
of Theorems 3.2 and 3.10 hold without change for the real valued case. Thus, by
choosing the size of the sample large enough, we are guaranteed that, with probability
at least 1 — 8, more than half of the hypotheses are A-correct on all but € of the points
of the whole domain.

Observe that if more than half of the functions A-agree with f on a point z then
the median of the functions A-agrees with f. From this we get that the median is the
natural generalization of the majority for this case. By taking the median of the k
weak hypotheses we get:

P, (Median(hy, hg, ..., h;) A-agrees with f) > 1—¢€.

4.4 Parallelizing PAC learning

The fact that the boosting by filtering algorithm, By}, accepts only a small fraction of
the examples with which it is presented has an interesting implication on the possibility
of achieving optimal speed-up when parallelizing learning algorithms.

Observe that the time complexity of Bys)4 is dominated by the time that is spent
by the procedure FiltEX on checking examples that are eventually rejected. Observe
also the probability that any given example is accepted during the generation of the
1th hypothesis is constant. In other words, it is independent of whether or not any
other example is tested or accepted during the ith stage.

Assume now that we use one of the standard parallel-computation paradigms, such
as the PRAM model, and that we have a computer with p processors at our disposal.
Then we can parallelize the procedure FiltEX in the following way. Each of the p
processors runs the procedure FiltEX independently, each making separate calls to
EX, so that they test different random examples.'” When one of the p processors
accepts an example, all the other processors are halted and their results are ignored.!®
The accepted example is then returned to WeakLearn as usual. Recall that out of
the O(1/e(In 1/€)*/2) examples that are needed for learning, only O(In 1/¢) examples
have to be accepted and returned to WeakLearn. If the number of processors is
O(1/€ey/In1/¢) then the search for an acceptable example takes expected constant time,
so that the expected running time of the boosting algorithm becomes O(In1/¢). If p
is smaller, then a p-fold speedup over the serial execution is achieved. We summarize
this observation in the following theorem.

Theorem 4.5 If C is a polynomially PAC-learnable concept class then there exists a
parallel learning algorithm for C that runs on a PRAM machine with O(1/¢) processors
whose time complexity dependence on the accuracy is O(log1/¢).

17We either assume that the running time of EX is negligible or that EX can generate many examples at
the same time.
1%We assume that halting all processors can be done in unit time.

42

5 Summary and open problems

The algorithms we have described in this paper give the best upper bounds currently
known on the resources required for polynomial PAC learning. While these bounds are
in some respects close to optimal, further improvement might still be possible in the
dependence of the sample and time complexity on the parameters € and ~.

One undesired property of our boosting algorithm is that it requires prior knowl-
edge of a distribution-independent bound on the accuracy of the hypotheses that
WeakLearn generates. While guessing a bound is a theoretically feasible solution,
it is expensive in practical applications [Dru93]. Recently, Freund and Schapire [FS95]
have developed a boosting algorithm which does not require such prior knowledge. The
number of weak hypotheses that need to be combined to reach a given level of accuracy
is almost as small as the number achieved here.

A deeper problem is that the assumption of distribution-independent bounds for
learning algorithms often seems to be unreasonable. The results in [F'S95] and The-
orem 4.4 are encouraging in this respect because they shows that boosting can be
achieved even without uniform bounds. This might be a sign that a richer, and maybe
more realistic theory of learning can be developed in which performance bounds are
distribution dependent.

In this paper we have shown that the boosting algorithm can be generalized to
multiple-valued concept classes as well as real valued concept classes. However, the
results regarding real-valued concept classes are still rather weak, and one would hope
that stronger types of boosting can be achieved in that context. The use of boosting in
the context of p-concepts [KS90] is another long standing open problem. Some progress
on the problem of boosting in the context of independent label noise has been achieved
in a recent work by Aslam and Decatur [AD93] about boosting learning algorithms in
the statistical query model introduced by Kearns [Kea93].

Last but not least, boosting has been successfully applied to some practical machine
learning problems [DSS93]. Further experimentation with boosting methods will hope-
fully achieve even better results. Such experiments are also important for discovering
interesting new problems for theoretical research.

6 Acknowledgments

I would like to thank Robert Schapire for his many contributions to this paper, which
include the use of boosting for compression, the implication of boosting on circuit com-
plexity and the definition of a general boosting algorithm. Most of the work described
in this paper was done when I was a student in the university of California in Santa
Cruz. I would like to thank my teachers there: Manfred Warmuth, David Haussler and
David Helmbold for their help in writing this paper. I would like to thank Eli Shamir
for the observation of the implication of boosting on learning in parallel. Finally, I
would like to thank the anonymous referees for their many valuable comments.

References

[AD93] J. A. Aslam and S. E. Decatur. General bounds on statistical query learning

43

[BEHWS7]
[BEHWS9]

[Dru93]
[DSS93]

[FS95]

[FW93]

[GHR92]
[GKP91]

[HKLW91]

[HLWSS]

[Kea93]

[KS90]

[KVS8]

[KV94]

[LWS6]

and PAC learning with noise via hypothesis boosting. In Proc. 35th Annu.
IEFEE Sympos. Found. Comput. Sci., November 1993.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s
razor. Inform. Proc. Lett., 24:377-380, April 1987.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability
and the Vapnik-Chervonenkis dimension. J. ACM, 36(4):929-965, 1989.

H. Drucker. private correspondence, 1992-1993.

Harris Drucker, Robert Schapire, and Patrice Simard. Improving perfor-
mance in neural networks using a boosting algorithm. In Advances in
Neural Informations Processing Systems 5, pages 42-49, San Mateo, CA,
1993. Morgan Kaufmann.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. In eurocolt95, 1995.

Sally Floyd and Manfred Warmuth. Sample compressions, learnability, and
the vapnik-chervonenkis dimension. Technical Report UCSC-CRI-93-13,
Computer and Information Sciences, University of California, Santa Cruz,
1993.

Goldmann, Hastad, and Razborov. Majority gates vs. general weighted
threshold gates. Computational Complexity, 2, 1992.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
mathematics, a foundation for computer science. Addison-Wesley, 1991.

D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth. Equivalence
of models for polynomial learnability. Inform. Comput., 95(2):129-161,
December 1991.

D. Haussler, N. Littlestone, and M. K. Warmuth. Predicting {0,1} func-
tions on randomly drawn points. In Proceedings of the 29th Annual IEFEFE
Symposium on Foundations of Computer Science, pages 100-109. IEEE
Computer Society Press, 1988.

M. Kearns. Efficient noise-tolerant learning from statistical queries. In
Proc. 25th Annu. ACM Sympos. Theory Comput., pages 392-401. ACM
Press, New York, NY, 1993.

M. J. Kearns and R. E. Schapire. Efficient distribution-free learning of
probabilistic concepts. In Proc. of the 31st Symposium on the Foundations
of Comp. Sci., pages 382-391. IEEE Computer Society Press, Los Alamitos,
CA, 1990.

M. Kearns and L.G. Valiant. Learning boolean formulae or finite automata
is as hard as factoring. Technical Report TR-14-88, Harvard University
Aiken Computation Laboratory, Cambridge, MA, 1988.

Kearns and Valiant. Cryptographic limitations on learning boolean formu-
lae and finite automata. Journal of the ACM, 41(1):67-95, 1994.

Nick Littlestone and Manfred Warmuth. Relating data compression and
learnability. This early and hard-to-locate work is referenced and partly
re-written in FW93, 1986.

44

[Nat91] B. K. Natarajan. Machine Learning: A Theoretical Approach. Morgan
Kaufmann, San Mateo, CA, 1991.

[Sch90] R. E. Schapire. The strength of weak learnability. Machine Learning,
5(2):197-227, 1990.

[Sch91] Robert E. Schapire. The Design and Analysis of Efficient Learning Algo-
rithms. PhD thesis, M.I.T., 1991.

[Sch92] Robert E. Schapire. private correspondence, January 1992.

[Sha92] E. Shamir. private correspondence, 1992.

[Val84] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134~
1142, November 1984.

A Summary of notation

A.1 Concept Learning Notation

The sample space is denoted X, the concept class is denoted C , and the class of
hypotheses is denoted H. Typical elements of these spaces are denoted z, ¢ and h
respectively. The distribution over X, according to which examples are generated,
is denoted by D. We denote by S = {(z1,¢(21)),...,(Tm,c(2))} a sample of m
examples, labeled according to ¢ € C. The accuracy parameter is denoted €, and
the reliability parameter is denoted 6. The sample, time, and space required for the
learning algorithm under discussion to achieve accuracy € with reliability ¢ are denoted
m(e, 6),s(€,6) and t(e, §) respectively.

A.2 Notation for describing boosting

We denote a generic weak learning algorithm by WeakLearn. We use ¢y and ég to
denote the accuracy and the reliability of WeakLearn. Usually ¢ is close to 1/2 (the
accuracy of a random guess) and &g is close to 1 (probability zero of generating an
€o-accurate hypothesis). For this reason we define v = 1/2 — ¢y and A = 1 — ég. The
number of examples, time and space required by the weak learner to achieve its fixed
goals are denoted mq, 1o, and sg respectively. We denote the hypothesis generated by
the boosting algorithm by hps, and the set of all such hypotheses by Hy;.

45

A.3 Meaning of common notation in different sections

symbol Meaning in Meaning in analysis of Meaning in analysis of
Majority-Vote Game BSamp Bpit
k The total number of The total number of weak hypotheses
iterations in the game. combined by the boosting algorithm.
1=0...k The number of The number of weak hypotheses
iterations played so far. generated so far.
r=0...2 The number of marks. The number of weak hypotheses that are correct
The points that The points in the The points in X
Xi have been marked sample on which r on which 7 out of
r times in the out of the first ¢ weak the first ¢ weak
first ¢ iterations hypotheses are correct hypotheses are correct
The value of The number of The probability of A
V(A) the set A sample points in A according to the
distribution D
The weight of The sum of the weights The probability of A
Wi(A) the set A assigned to the sample according to the
in the 2th points in A using hypotheses | distribution filtered using
iteration hi,...,hizq hypotheses hy,..., hi_1
al/al . is the probability of
al The weight assigned to points in X! accepting an example from
defined in Equation 1 X! during the ith iteration.
where ol , = maxp<,<; '
i The potential of the points in X, defined in Equation 6
¢t = V(X}) || The value of X} The number of The probability of X
sample points in X! according to the
distribution D
The fraction, in The fraction of the The fraction (in terms of the
zl = terms of value) of X! points of X! on distribution D) of X!
i 141
V()i/r&)i;l) that is marked which h;yq on which h;yq is correct
in the ¢th iteration is correct
L The set of points The sample points on The set of points in X on

The loss set

marked less than k/2
times in the &
iterations

which the majority vote
is incorrect
i.e. the empty set

which the majority vote is
incorrect, i.e. the set of points
on which hps is incorrect.

A.4 Special Notation

The expected weight of a random example in the ¢th iteration. This notation is
used in the analysis of Byy because #;/aj,,, is the probability of accepting a

max

random example during the ith iteration.

e 4, - the actual edge of the ¢th weak hypothesis, h;. In other words, the error of
h;, with respect to the ith filtered distribution, is 1/2 — 4;.

46

e mp - Denotes the number of examples required by B, for generating a weak
hypothesis with the desired reliability.

B Boosting the reliability of a learning algo-
rithm

We present the boosting algorithm, B[, in Figure 6, and prove its performance.

Proof of Lemma 3.5 The bound on the number of examples is immediate from
the definition of the algorithm. To prove that the algorithm is correct, we bound the
probability that the resulting hypothesis has error larger than 1/2 — 4/2. There are
two events that might cause this. The first is that all of the r hypotheses generated by
WeakLearn have error larger than 1/2 — 5. The second is that a hypothesis that has
error larger than 1/2 — v /2 makes less mistakes, on the test sample, than a hypothesis
that has error smaller than 1/2 —~. It is easy to bound the probability of each of those
events by 6/2. Which proves the lemma.

As we know that each call to WeakLearn has probability of at least A of generating
a hypothesis with error smaller than 1/2 — v at each trial, the probability of not
generating any accurate enough hypothesis is at most

(1 _ /\)T _ (1 _ /\)I/Aln(2/6) < e—ln(2/6) _ (5/2)

In order for the second event to happen, given that one of the hypotheses has error
smaller than 1/2 — v, there has to be a bad hypothesis whose estimated error is larger
than that of the good hypothesis. For this to happen, the gap between the actual error
and the estimated error for at least one of the r hypotheses has to be at least /4.
Using Hoeffding bounds we get that this probability is at most

re=2m0/9? = rexp(—2(8/72) 111(27‘/6)(7/4)2) = pe~In(2r/0) _ 6/2,
which proves the lemma. |
Algorithm By

Input: EX ,WeakLearn, v, A, ¢
Output: A hypothesis hys, that has error smaller than 1/2 — v/2 with probability at least 1 — 4.

1. Call
WeakLearn r = ﬂ@ times, each time on a different set of random examples.
Store the resulting hypotheses as hy,...,h,.

2. Count the number of mistakes made by each of the r hypotheses on a random
sample of size m = (8/7%)In(2r/§).
3. Return the hypothesis that makes the smallest number of mistakes on the

sample.

Figure 6: A description of the algorithm for boosting the reliability of an algorithm.

47

C Proof of Lemma 2.5

First observe that as we are interested only in the ratio of the weight and value of GG
to that of D, we can assume without loss of generality that V(D)= W(D) = 1.
Define the following series of partitions of D.
L] 770 = {D}
o P1 = {D}, Di} where the sets are disjoint and V(D}) = V(D7) = 3.
o Construct P;4q from P; by splitting each set in P; into two disjoint equal valued
parts so that the value of each part is exactly 27°.

We shall now use the partitions Py, Py, Po, . . . to construct a series of sets G, G1,Go, . . .

that will provide better and better approximations of the target set (G. Assume that
the binary expansion of 1/2 4 v is

1 o 4
- _ § :b,Q—]

(note that by = 0,b; = 1) and construct the sets (¢; according to the following inductive
procedure:

Go=10
A; = the set with the largest weight in P; that is not a subset of G;

G ith, =0 G,
LT it =1 G UA,;

It is clear that (; is a monotonically increasing series of sets and that lim;_.., V(G;) =
1/2+ .

Note that all of the parts in P have equal value. Thus the ratio between the value of
complement of GG; and the value of A; is equal to the number of parts that are outside
G';. On the other hand, the weight of the set A; is the largest among the parts outside
G;. Thus the ratio of the weight of the complement of G; to the weight of A; is at least
the number of parts. This fact can be written as follows.

W(A) o V(A
1 - W(Gz) —1- V(Gi)
We shall now prove by induction on 7 that Vi > 0 W(G;) > V(G,).
e For i =0, Go = () so the claim holds trivially.

o For i > 1,if b; = 0 then G;41 = G| so the induction holds trivially. Else, b; = 1
and thus G411 = G; U A; and we get:

W(Giy1) = W(Go) + W(A;) = V(Gy) + (W(GG) = V(G)) + W(A) >
V(G + (W(G) = V() + VA A= LEEg =)
V(A;)
V(Gi) + V(A + (W(G) = V(G - m]

The first two terms sum to V(G41), and the last term is positive because A; C [en
implies that V(A;) < 1 — V(G;) and because from the induction hypothesis
W(G;) — V(G;) > 0. The induction hypothesis is thus proven.

48

Define G = |J52, G;. As all A; are in the o-algebra X then so is G. Also V(G) =
lim; e V(G;) = 1/24 7. similarly W(G) = lim;o. W(G;) > 1/2 4 v and because for
all ¢ we have W(G;) > V((G;), we also get an inequality at the limit W(G) > V(G) =
1/2 + v, which proves the lemma. |

D Proof of Lemma 3.10

In order to prove the lemma, we use the following technical lemma:

Lemma D.1 For any real numbers x > 1 and 0 < p < 1/2

:)< baje) P (i) (28)

xp <_ 3(1 —4p?)a /%exH(l/z—u) V1—4u?

Where H(y) = —ylny — (1 — y)In(1 — y) is the entropy function, and the extension
of the binomial function to the reals is based on the extension of the factorial to the
Gamma function z! = T'(z + 1).

Proof: The proof of this lemma is based on the Stirling approximation. Notice
that as & — oo, the lower bound converges to 1 while the upper bound converges to
(1 — 4u?)~1/2. In other words, for large values of z the binomial <1’(1/€—u)) is related
to the exponential function in the denominator by a small factor.

Stirling approximation to the factorial can be written in the following way:'®

Vaoe>1 xlnx—w—l—lnTx—l—ln\/Q?r<ln(x!)<$lnx—w—|—h17x—|—ln\/27r—l—%.
z

From this we get the lower bound as follows

In (xu/;c_ M)) = Ina!—In((1/2 - p)e)! — n((1/2 + p)z)!

1
> xlnx—w—l—%—l—lny?w

_x(1/2—,u)1n(x(1/2—,u))-|-gc(1/2_lu)_w_ln\&—_m
o124) Ina(1/2 4)+ 212+) - LRIy e ST

_ xH(l/Q—u)—lnﬁ_lnm_ln@_m

1
> aH(1/2—pu)—Inv2 n2 - ————.
> zH(1/2—p)—InvV2rz+1n 30— 40201

And the upper bound as follows

In (x(l/g— M)) = Ina!—In((1/2 - p)e)! — n((1/2 + p)z)!

19See, for example, Equation (9.91) in [GKP91].

49

< avlnav—ac—l—hl—ge—|—ln\/27r—|—L
2 12z

—a(1)2 —) n(a(1/2 = @) + 2(1/2 —) - w Cnver

—a(1/2 +) n(a(1/2 4+ 1) + 2(1/2 4 1) — w Cnver

= acH(l/Q—,u)—111\/5—111\/%—,u?—111\/27r—|—L

122

1
= H(1/2 — —1 2 In2-1 1—4pu?2 4+ — .
zH(1/) —Inv2rz 4 In n4/ 1 —|—12$
|

Proof of Lemma 3.9 : We can rewrite the definition of a! from Figure 4 as
follows (ignoring the choices of r that give o’ = 0 for the purpose of the upper bound):

S R A | AT E)

where 2 = k—i—1and p = 1/2 - (|k/2] —r)/(k—¢—1). Using the upper bound
given in Lemma D.1 bound the last expression for any value of u

z LA € S VSRRV ¢ AT
((%—,u)x)(Q)G
2 /1 1 1 1 5 1 1 5
Sl H(= - ~ —p)in(= -2 - In(=4+2)) .
< mmexp(x (5 -1 +aly —wn(s - D+ ol +wn(; + 1))
But a basic inequality is that for any —1/2 < p < 1/2

1 1 1 1

H-m<—GG-mhG;-D-G+mmG+).

This inequality is strict unless y = v/2. From this we get that

z Lo YeG-wl L Y eGem o /2 77
((%—,u)x)(Q 2) (2+2) < T /1 —~2

As v <1/2,and z > 1, we get the statement of the lemma. |

el/12e

30

